Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439.
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2118597119. doi: 10.1073/pnas.2118597119. Epub 2022 May 6.
SignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize. The newly developed laser-pumped X-ray nanodiffraction imaging technique reported here has simultaneous 100-ps temporal and 25-nm spatial resolutions. This approach reveals pathways of the nanoscale structural rearrangement upon ultrafast optical excitation, different from those transitions under slowly varying parameters. The spatiotemporally resolved structural characterization provides crucial nanoscopic insights into ultrafast phase transitions and opens opportunities for controlling nanoscale phases on ultrafast time scales.
意义相变是物质状态之间的变化,具有不同的电子、磁或结构特性,是凝聚态物理的核心,也是有价值技术的基础。一级相变本质上是不均匀的。当受到超短激发时,纳米级的相区域会迅速演变,这对其进行特征描述提出了重大的实验挑战。这里报道的新开发的激光泵浦 X 射线纳米衍射成象技术具有同时 100 皮秒的时间和 25 纳米的空间分辨率。该方法揭示了超快光激发下纳米结构重排的途径,与在缓慢变化参数下的转变不同。时空分辨的结构特征提供了对超快相变的关键纳米级见解,并为在超快时间尺度上控制纳米级相提供了机会。