4th Physical Institute - Solids and Nanostructures, University of Göttingen, 37077 Göttingen, Germany.
Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
Science. 2021 Jan 22;371(6527):371-374. doi: 10.1126/science.abd2774.
Understanding microscopic processes in materials and devices that can be switched by light requires experimental access to dynamics on nanometer length and femtosecond time scales. Here, we introduce ultrafast dark-field electron microscopy to map the order parameter across a structural phase transition. We use ultrashort laser pulses to locally excite a 1TaS (1-polytype of tantalum disulfide) thin film and image the transient state of the specimen by ultrashort electron pulses. A tailored dark-field aperture array allows us to track the evolution of charge-density wave domains in the material with simultaneous femtosecond temporal and 5-nanometer spatial resolution, elucidating relaxation pathways and domain wall dynamics. The distinctive benefits of selective contrast enhancement will inspire future beam-shaping technology in ultrafast transmission electron microscopy.
理解可以通过光切换的材料和设备中的微观过程,需要实验方法获取纳米长度和飞秒时间尺度上的动力学信息。在这里,我们引入超快暗场电子显微镜,以绘制跨越结构相变的有序参数图。我们使用超短激光脉冲局部激发 1TaS(1-型二硫化钽)薄膜,并通过超短电子脉冲来对样品的瞬态进行成像。经过精心设计的暗场孔径阵列允许我们以同时具有飞秒时间分辨率和 5 纳米空间分辨率的方式跟踪材料中电荷密度波畴的演化,阐明弛豫途径和畴壁动力学。这种选择性对比度增强的独特优势将激发超快透射电子显微镜中的未来光束整形技术。