Department of Medicinal Chemistry, The University of Minnesota, Minneapolis, Minnesota 55455, United States.
Department of Neurology, The University of Minnesota, Minneapolis, Minnesota 55455, United States.
ACS Chem Neurosci. 2022 May 18;13(10):1549-1557. doi: 10.1021/acschemneuro.2c00100. Epub 2022 May 6.
Synaptic and cognitive deficits mediated by a severe reduction in excitatory neurotransmission caused by a disproportionate accumulation of the neuronal protein tau in dendritic spines is a fundamental mechanism that has been found repeatedly in models of tauopathies, including Alzheimer's disease, Lewy body dementia, frontotemporal dementia, and traumatic brain injury. Synapses thus damaged may contribute to dementia, among the most feared cause of debilitation in the elderly, and currently there are no treatments to repair them. Caspase-2 (Casp2) is an essential component of this pathological cascade. Although it is believed that Casp2 exerts its effects by hydrolyzing tau at aspartate-314, forming Δtau314, it is also possible that a noncatalytic mechanism is involved because catalytically dead Casp2 is biologically active in at least one relevant cellular pathway, that is, autophagy. To decipher whether the pathological effects of Casp2 on synaptic function are due to its catalytic or noncatalytic properties, we discovered and characterized a new Casp2 inhibitor, compound [p (Casp2) = 8.12], which is 123-fold selective versus Casp3 and >2000-fold selective versus Casp1, Casp6, Casp7, and Casp9. In an in vitro assay based on Casp2-mediated cleavage of tau, compound blocked the production of Δtau314. Importantly, compound prevented tau from accumulating excessively in dendritic spines and rescued excitatory neurotransmission in cultured primary rat hippocampal neurons expressing the P301S tau variant linked to FTDP-17, a familial tauopathy. These results support the further development of small-molecule Casp2 inhibitors to treat synaptic deficits in tauopathies.
突触和认知功能障碍是由神经元蛋白 tau 在树突棘中的过度积累导致兴奋性神经递质传递严重减少介导的,这是在包括阿尔茨海默病、路易体痴呆、额颞叶痴呆和创伤性脑损伤在内的 tau 病模型中反复发现的基本机制。受损的突触可能导致痴呆,这是老年人最可怕的致残原因之一,目前尚无修复它们的治疗方法。Caspase-2(Casp2)是这个病理级联反应的重要组成部分。尽管人们认为 Casp2 通过在天冬氨酸-314 处水解 tau 来发挥作用,形成 Δtau314,但也可能涉及非催化机制,因为催化失活的 Casp2 在至少一种相关的细胞途径(即自噬)中具有生物活性。为了解 Casp2 对突触功能的病理影响是否归因于其催化或非催化特性,我们发现并表征了一种新的 Casp2 抑制剂,化合物 [p(Casp2)=8.12],它对 Casp3 的选择性是 123 倍,对 Casp1、Casp6、Casp7 和 Casp9 的选择性大于 2000 倍。在基于 Casp2 介导的 tau 切割的体外测定中,化合物阻断了 Δtau314 的产生。重要的是,化合物阻止 tau 在树突棘中过度积累,并挽救了表达与 FTDP-17 相关的 P301S tau 变体的原代大鼠海马神经元中的兴奋性神经传递,FTDP-17 是一种家族性 tau 病。这些结果支持进一步开发小分子 Casp2 抑制剂来治疗 tau 病中的突触缺陷。