Suppr超能文献

一种使用定量蛋白质组学亚细胞分级实验数据估算蛋白质在多个隔室中分布的方法。

A Method to Estimate the Distribution of Proteins across Multiple Compartments Using Data from Quantitative Proteomics Subcellular Fractionation Experiments.

机构信息

Department of Biostatistics and Epidemiology, Rutgers School of Public Health and Rutgers Cancer Institute of New Jersey, 683 Hoes Lane West, Piscataway, New Jersey 08854, United States.

Center for Advanced Biotechnology and Medicine and Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, 679 Hoes Lane West, Piscataway, New Jersey 08854, United States.

出版信息

J Proteome Res. 2022 Jun 3;21(6):1371-1381. doi: 10.1021/acs.jproteome.1c00781. Epub 2022 May 6.

Abstract

Knowledge of cellular location is key to understanding the biological function of proteins. One commonly used large-scale method to assign cellular locations is subcellular fractionation, followed by quantitative mass spectrometry to identify proteins and estimate their relative distribution among centrifugation fractions. In most of such subcellular proteomics studies, each protein is assigned to a single cellular location by comparing its distribution to those of a set of single-compartment reference proteins. However, in many cases, proteins reside in multiple compartments. To accurately determine the localization of such proteins, we previously introduced constrained proportional assignment (CPA), a method that assigns each protein a fractional residence over all reference compartments (Jadot 2017, 16(2), 194-212. 10.1074/mcp.M116.064527). In this Article, we describe the principles underlying CPA, as well as data transformations to improve accuracy of assignment of proteins and protein isoforms, and a suite of R-based programs to implement CPA and related procedures for analysis of subcellular proteomics data. We include a demonstration data set that used isobaric-labeling mass spectrometry to analyze rat liver fractions. In addition, we describe how these programs can be readily modified by users to accommodate a wide variety of experimental designs and methods for protein quantitation.

摘要

蛋白质的细胞定位知识是理解其生物学功能的关键。一种常用的大规模方法是亚细胞分级分离,然后进行定量质谱分析以鉴定蛋白质并估计它们在离心部分中的相对分布。在大多数此类亚细胞蛋白质组学研究中,通过比较其分布与一组单室参考蛋白质的分布,将每种蛋白质分配到单个细胞位置。然而,在许多情况下,蛋白质存在于多个隔室中。为了准确确定此类蛋白质的定位,我们之前引入了约束比例分配(CPA),这是一种将每个蛋白质分配给所有参考隔室的分数居留的方法(Jadot 2017,16(2),194-212。10.1074/mcp.M116.064527)。在本文中,我们描述了 CPA 背后的原理,以及用于提高蛋白质和蛋白质同工型分配准确性的数据转换,以及一套基于 R 的程序,用于实现 CPA 和用于分析亚细胞蛋白质组学数据的相关程序。我们包括一个使用同位素标记质谱分析大鼠肝部分的演示数据集。此外,我们还描述了用户如何轻松修改这些程序以适应各种实验设计和蛋白质定量方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验