Suppr超能文献

MCF-7 乳腺癌细胞的定量细胞器蛋白质组学揭示了细胞功能过程中蛋白质的多个亚细胞定位。

Quantitative organelle proteomics of MCF-7 breast cancer cells reveals multiple subcellular locations for proteins in cellular functional processes.

机构信息

Division of Medicine, University College London, 5 University Street, London WC1E 6JF, United Kingdom.

出版信息

J Proteome Res. 2010 Jan;9(1):495-508. doi: 10.1021/pr9008332.

Abstract

We have combined sucrose density gradient subcellular fractionation with quantitative, tandem-mass-spectrometry-based shotgun proteomics to investigate spatial distributions of proteins in MCF-7 breast cancer cells. Emphasis was placed on four major organellar compartments: cytosol, plasma membrane, endoplasmic reticulum, and mitochondrion. Two-thousand one-hundred eighty-four proteins were securely identified. Four-hundred eighty-one proteins (22.0% of total proteins identified) were found in unique sucrose gradient fractions, suggesting they may have unique subcellular locations. 454 proteins (20.8%) were found to be ubiquitously distributed. The remaining 1249 proteins (57.2%) were consistent with intermediate distribution over multiple, but not all, subcellular locations. Ninety-four proteins implicated in breast cancer and 478 other proteins which share the same five major cellular biological processes with a majority of the breast cancer proteins were observed in 334 and 1223 subcellular locations, respectively. The data obtained is used to evaluate the possibility of defining more exact sets of subcellular organelles, the completeness of current descriptions of spatial distribution of cellular proteins, the importance of multiple subcellular locations for proteins in functional processes, the subcellular distribution of proteins related to breast cancer, and the possibility of using these methods for dynamic spatio/temporal studies of function/regulation in MCF-7 breast cancer cells.

摘要

我们将蔗糖密度梯度亚细胞分级与基于定量串联质谱的鸟枪法蛋白质组学相结合,研究 MCF-7 乳腺癌细胞中蛋白质的空间分布。重点放在四个主要的细胞器区室上:细胞质、质膜、内质网和线粒体。鉴定到 2184 种蛋白质。481 种蛋白质(鉴定到的总蛋白质的 22.0%)存在于独特的蔗糖梯度部分,这表明它们可能具有独特的亚细胞位置。454 种蛋白质(20.8%)被发现广泛分布。其余 1249 种蛋白质(57.2%)与多个但不是所有亚细胞位置的中间分布一致。在 334 和 1223 个亚细胞位置分别观察到 94 种与乳腺癌相关的蛋白质和 478 种具有相同五个主要细胞生物学过程的其他蛋白质。获得的数据用于评估定义更精确的亚细胞细胞器集的可能性、当前对细胞蛋白质空间分布描述的完整性、多个亚细胞位置对功能过程中蛋白质的重要性、与乳腺癌相关的蛋白质的亚细胞分布以及这些方法用于 MCF-7 乳腺癌细胞中功能/调节的动态时空研究的可能性。

相似文献

2
Application of proteomic marker ensembles to subcellular organelle identification.
Mol Cell Proteomics. 2010 Feb;9(2):388-402. doi: 10.1074/mcp.M900432-MCP200. Epub 2009 Nov 2.
4
Dynamic Organellar Maps for Spatial Proteomics.
Curr Protoc Cell Biol. 2019 Jun;83(1):e81. doi: 10.1002/cpcb.81. Epub 2018 Nov 29.
5
Proteomics of Saccharomyces cerevisiae Organelles.
Mol Cell Proteomics. 2010 Mar;9(3):431-45. doi: 10.1074/mcp.R900002-MCP200. Epub 2009 Dec 1.
6
Isolation of endocitic organelles by density gradient centrifugation.
Methods Mol Biol. 2008;424:317-31. doi: 10.1007/978-1-60327-064-9_25.
7
Complementary methods to assist subcellular fractionation in organellar proteomics.
Expert Rev Proteomics. 2008 Aug;5(4):603-17. doi: 10.1586/14789450.5.4.603.
8
Integrated proteomic and metabolic analysis of breast cancer progression.
PLoS One. 2013 Sep 27;8(9):e76220. doi: 10.1371/journal.pone.0076220. eCollection 2013.
9
Approaches to Characterize Organelle, Compartment, or Structure Purity.
Methods Mol Biol. 2017;1511:13-28. doi: 10.1007/978-1-4939-6533-5_2.

引用本文的文献

1
Differences in Protein Capture by SP3 and SP4 Demonstrate Mechanistic Insights of Proteomics Cleanup Techniques.
J Proteome Res. 2024 Sep 6;23(9):3877-3889. doi: 10.1021/acs.jproteome.4c00206. Epub 2024 Aug 19.
2
Common methods in mitochondrial research (Review).
Int J Mol Med. 2022 Oct;50(4). doi: 10.3892/ijmm.2022.5182. Epub 2022 Aug 25.
4
Moonlighting Proteins and Cardiopathy in the Spatial Response of MCF-7 Breast Cancer Cells to Tamoxifen.
Proteomics Clin Appl. 2019 Sep;13(5):e1900029. doi: 10.1002/prca.201900029. Epub 2019 Jul 25.
5
Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics.
Nat Commun. 2019 Jan 18;10(1):331. doi: 10.1038/s41467-018-08191-w.
7
Comparative Analysis of Label-Free and 8-Plex iTRAQ Approach for Quantitative Tissue Proteomic Analysis.
PLoS One. 2015 Sep 2;10(9):e0137048. doi: 10.1371/journal.pone.0137048. eCollection 2015.
8
LIN28A Modulates Splicing and Gene Expression Programs in Breast Cancer Cells.
Mol Cell Biol. 2015 Sep;35(18):3225-43. doi: 10.1128/MCB.00426-15. Epub 2015 Jul 6.
9
Involvement of Tetraspanin C189 in Cell-to-Cell Spreading of the Dengue Virus in C6/36 Cells.
PLoS Negl Trop Dis. 2015 Jul 1;9(7):e0003885. doi: 10.1371/journal.pntd.0003885. eCollection 2015.
10
How Many proteins are Missed in Quantitative proteomics Based on Ms/Ms sequencing Methods?
Proteomics Insights. 2010 Oct 28;3:61-66. doi: 10.4137/PRI.S5882.

本文引用的文献

1
Subproteome analysis of the neutrophil cytoskeleton.
Proteomics. 2009 Apr;9(7):2037-49. doi: 10.1002/pmic.200800674.
2
Nucleocytoplasmic transport of proteins.
Biochemistry (Mosc). 2007 Dec;72(13):1439-57. doi: 10.1134/s0006297907130032.
4
The dynamic phagosomal proteome and the contribution of the endoplasmic reticulum.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18520-5. doi: 10.1073/pnas.0705801104. Epub 2007 Nov 15.
5
Organellar proteomics to create the cell map.
Curr Opin Cell Biol. 2007 Aug;19(4):376-85. doi: 10.1016/j.ceb.2007.05.004. Epub 2007 Aug 3.
6
Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets.
Mol Cell Proteomics. 2007 Nov;6(11):1997-2011. doi: 10.1074/mcp.M600465-MCP200. Epub 2007 Jul 25.
8
The subcellular localization of the mammalian proteome comes a fraction closer.
Genome Biol. 2006;7(6):222. doi: 10.1186/gb-2006-7-6-222.
9
Stop and go: anti-proliferative and mitogenic functions of the transcription factor C/EBPbeta.
Cell Cycle. 2006 May;5(9):953-7. doi: 10.4161/cc.5.9.2733. Epub 2006 May 1.
10
A mammalian organelle map by protein correlation profiling.
Cell. 2006 Apr 7;125(1):187-99. doi: 10.1016/j.cell.2006.03.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验