Suppr超能文献

从推理可重复性的角度分析和协调共定位与转录组全关联研究。

Analyzing and reconciling colocalization and transcriptome-wide association studies from the perspective of inferential reproducibility.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.

Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Am J Hum Genet. 2022 May 5;109(5):825-837. doi: 10.1016/j.ajhg.2022.04.005.

Abstract

Transcriptome-wide association studies and colocalization analysis are popular computational approaches for integrating genetic-association data from molecular and complex traits. They show the unique ability to go beyond variant-level genetic-association evidence and implicate critical functional units, e.g., genes, in disease etiology. However, in practice, when the two approaches are applied to the same molecular and complex-trait data, the inference results can be markedly different. This paper systematically investigates the inferential reproducibility between the two approaches through theoretical derivation, numerical experiments, and analyses of four complex trait GWAS and GTEx eQTL data. We identify two classes of inconsistent inference results. We find that the first class of inconsistent results (i.e., genes with strong colocalization but weak transcriptome-wide association study [TWAS] signals) might suggest an interesting biological phenomenon, i.e., horizontal pleiotropy; thus, the two approaches are truly complementary. The inconsistency in the second class (i.e., genes with weak colocalization but strong TWAS signals) can be understood and effectively reconciled. To this end, we propose a computational approach for locus-level colocalization analysis. We demonstrate that the joint TWAS and locus-level colocalization analysis improves specificity and sensitivity for implicating biologically relevant genes.

摘要

转录组关联研究和共定位分析是整合分子和复杂性状遗传关联数据的流行计算方法。它们具有独特的能力,可以超越变异水平的遗传关联证据,并将关键的功能单元(例如基因)纳入疾病病因学中。然而,在实践中,当这两种方法应用于相同的分子和复杂性状数据时,推断结果可能会有很大的不同。本文通过理论推导、数值实验以及对四个复杂性状 GWAS 和 GTEx eQTL 数据的分析,系统地研究了这两种方法之间的推断可重复性。我们确定了两类不一致的推断结果。我们发现,第一类不一致的结果(即具有强烈共定位但弱转录组关联研究 [TWAS] 信号的基因)可能表明存在有趣的生物学现象,即水平多效性;因此,这两种方法确实是互补的。第二类不一致(即具有弱共定位但强 TWAS 信号的基因)可以被理解并有效地调和。为此,我们提出了一种用于基因座水平共定位分析的计算方法。我们证明了联合 TWAS 和基因座水平共定位分析可以提高鉴定生物学相关基因的特异性和敏感性。

相似文献

3
Statistical power of transcriptome-wide association studies.转录组关联研究的统计功效。
Genet Epidemiol. 2022 Dec;46(8):572-588. doi: 10.1002/gepi.22491. Epub 2022 Jun 29.
9
A powerful and versatile colocalization test.一种强大且多功能的共定位测试。
PLoS Comput Biol. 2020 Apr 10;16(4):e1007778. doi: 10.1371/journal.pcbi.1007778. eCollection 2020 Apr.

引用本文的文献

8
Genetic regulation of gene expression across multiple tissues in chickens.鸡多个组织中基因表达的遗传调控。
Nat Genet. 2025 May;57(5):1298-1308. doi: 10.1038/s41588-025-02155-9. Epub 2025 Apr 8.

本文引用的文献

10
Probabilistic fine-mapping of transcriptome-wide association studies.全转录组关联研究的概率精细映射。
Nat Genet. 2019 Apr;51(4):675-682. doi: 10.1038/s41588-019-0367-1. Epub 2019 Mar 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验