Suppr超能文献

相似文献

2
Systems-Level Chemical Biology to Accelerate Antibiotic Drug Discovery.
Acc Chem Res. 2021 Apr 20;54(8):1909-1920. doi: 10.1021/acs.accounts.1c00011. Epub 2021 Mar 31.
3
Small and lethal: searching for new antibacterial compounds with novel modes of action.
Biochem Cell Biol. 2008 Apr;86(2):111-5. doi: 10.1139/O08-011.
4
Novel antibacterials: a genomics approach to drug discovery.
Curr Drug Targets Infect Disord. 2002 Dec;2(4):291-308. doi: 10.2174/1568005023342227.
5
The role of genomics in the discovery of novel targets for antibiotic therapy.
Pharmacogenomics. 2002 May;3(3):315-23. doi: 10.1517/14622416.3.3.315.
6
When will the genomics investment pay off for antibacterial discovery?
Biochem Pharmacol. 2006 Mar 30;71(7):1096-102. doi: 10.1016/j.bcp.2005.11.025. Epub 2006 Jan 4.
7
Use of genomics to select antibacterial targets.
Biochem Pharmacol. 2006 Mar 30;71(7):1066-72. doi: 10.1016/j.bcp.2005.12.004. Epub 2006 Jan 18.
8
Leveraging Marine Natural Products as a Platform to Tackle Bacterial Resistance and Persistence.
Acc Chem Res. 2021 Apr 20;54(8):1866-1877. doi: 10.1021/acs.accounts.1c00007. Epub 2021 Mar 18.
9
New antibiotic discovery, novel screens, novel targets and impact of microbial genomics.
Curr Opin Microbiol. 1998 Oct;1(5):530-4. doi: 10.1016/s1369-5274(98)80085-4.
10
Genomic tools to profile antibiotic mode of action.
Crit Rev Microbiol. 2015;41(4):465-72. doi: 10.3109/1040841X.2013.866073. Epub 2014 Mar 12.

引用本文的文献

1
Primed for Discovery.
Biochemistry. 2024 Nov 5;63(21):2705-2713. doi: 10.1021/acs.biochem.4c00464. Epub 2024 Oct 15.
2
Anti- compounds from based on Pan-genome and subtractive proteomics.
Front Microbiol. 2023 Jul 6;14:1218176. doi: 10.3389/fmicb.2023.1218176. eCollection 2023.

本文引用的文献

1
Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis by competitive activity-based protein profiling.
Cell Chem Biol. 2022 May 19;29(5):883-896.e5. doi: 10.1016/j.chembiol.2021.09.002. Epub 2021 Oct 1.
2
Targeted regulation of transcription in primary cells using CRISPRa and CRISPRi.
Genome Res. 2021 Nov;31(11):2120-2130. doi: 10.1101/gr.275607.121. Epub 2021 Aug 18.
3
Genome-wide gene expression tuning reveals diverse vulnerabilities of M. tuberculosis.
Cell. 2021 Aug 19;184(17):4579-4592.e24. doi: 10.1016/j.cell.2021.06.033. Epub 2021 Jul 22.
4
Predicting antimicrobial mechanism-of-action from transcriptomes: A generalizable explainable artificial intelligence approach.
PLoS Comput Biol. 2021 Mar 29;17(3):e1008857. doi: 10.1371/journal.pcbi.1008857. eCollection 2021 Mar.
5
The impact of genetic diversity on gene essentiality within the Escherichia coli species.
Nat Microbiol. 2021 Mar;6(3):301-312. doi: 10.1038/s41564-020-00839-y. Epub 2021 Jan 18.
6
Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation.
Antimicrob Agents Chemother. 2020 Dec 16;65(1). doi: 10.1128/AAC.01373-20.
8
Morphological profiling of tubercle bacilli identifies drug pathways of action.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18744-18753. doi: 10.1073/pnas.2002738117. Epub 2020 Jul 17.
9
A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria and Avoids Drug Resistance.
Cell. 2020 Jun 25;181(7):1518-1532.e14. doi: 10.1016/j.cell.2020.05.005. Epub 2020 Jun 3.
10
A Deep Learning Approach to Antibiotic Discovery.
Cell. 2020 Feb 20;180(4):688-702.e13. doi: 10.1016/j.cell.2020.01.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验