Suppr超能文献

氮掺杂碳包覆的双模态成像及光热/光动力/化疗的等离子体 Bi 纳米粒子

Plasmonic Bi nanoparticles encapsulated by N-Carbon for dual-imaging and photothermal/photodynamic/chemo-therapy.

机构信息

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China; School of Economics and Management, Baicheng Normal University, Baicheng 137000, China.

Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

出版信息

Biomater Adv. 2022 Mar;134:112546. doi: 10.1016/j.msec.2021.112546. Epub 2021 Nov 14.

Abstract

In this work, the plasmonic Bi@N-Carbon@PEG-DOX nanocomposites were constructed to integrate the imaging and synergistic therapy in one nanoplatform. Here, Bi nanoparticles were encapsulated into the N-doped carbon nanomaterials via a simple solvothermal method. The accumulated adjacent semimetal Bi nanoparticles in Bi@N‑carbon enhanced the local surface plasmon resonance (LSPR) to make the great NIR harvest and high photothermal converting efficiency (52.3%, Bi@C-2). And that also was confirmed by the Finite Difference Time Domain (FDTD) calculation. Moreover, the LSPR would induce the hot charges (polarization charges), which were captured by O and HO molecules to form ROS for photodynamic therapy (PDT). And the heterostructure of Bi and N‑carbon further improved the effective segregation of the hot charges, making the 6.9 times ROS production (Bi@C-2) in comparing with pure Bi sample. In view of the ultrahigh X-ray attenuation coefficient of Bi and great photothermal effect, Bi@N-Carbon@PEG possessed the outstanding computerized tomography (CT) and photothermal imaging capacity. Meanwhile, they also exhibited the favourable biodegradation ability, inducing the elimination via urine and feces within 14 day. The integration of the multi-model (CT and Thermal) imaging and the PTT/PDT/chemotherapy makes Bi@N‑carbon@PEG-DOX to be a potential candidate for cancer treatment.

摘要

在这项工作中,构建了等离子体 Bi@N-Carbon@PEG-DOX 纳米复合材料,将成像和协同治疗集成在一个纳米平台中。在这里,通过简单的溶剂热方法将 Bi 纳米颗粒封装到掺杂氮的碳纳米材料中。Bi@N-Carbon 中积累的相邻半金属 Bi 纳米颗粒增强了局域表面等离子体共振(LSPR),从而实现了对近红外光的高效吸收和高光热转换效率(52.3%,Bi@C-2)。这也通过有限差分时域(FDTD)计算得到了证实。此外,LSPR 会诱导热电荷(极化电荷),这些电荷被 O 和 HO 分子捕获,形成用于光动力治疗(PDT)的活性氧(ROS)。Bi 和 N-Carbon 的异质结构进一步提高了热电荷的有效分离,使得 ROS 的产生量(Bi@C-2)是纯 Bi 样品的 6.9 倍。鉴于 Bi 的超高 X 射线衰减系数和优异的光热效应,Bi@N-Carbon@PEG 具有出色的计算机断层扫描(CT)和光热成像能力。同时,它们还表现出良好的生物降解能力,可在 14 天内通过尿液和粪便排出。多模式(CT 和热)成像与 PTT/PDT/化疗的结合使 Bi@N-Carbon@PEG-DOX 成为癌症治疗的潜在候选药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验