Wang Jinlin, Zhou Jiazheng, Xu Xiao, Meng Fanqi, Xiang Chunxu, Lou Licheng, Yin Kang, Duan Biwen, Wu Huijue, Shi Jiangjian, Luo Yanhong, Li Dongmei, Xin Hao, Meng Qingbo
Beijing National Laboratory for Condensed Matter Physics, Renewable Energy Laboratory, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater. 2022 Jul;34(27):e2202858. doi: 10.1002/adma.202202858. Epub 2022 May 31.
Aiming at a large open-circuit voltage (V ) deficit in Cu ZnSn(S,Se) (CZTSSe) solar cells, a new and effective strategy to simultaneously regulate the back interface and restrain bulk defects of CZTSSe absorbers is developed by directly introducing a thin GeO layer on Mo substrates. Power conversion efficiency (power-to-efficiency) as high as 13.14% with a V of 547 mV is achieved for the champion device, which presents a certified efficiency of 12.8% (aperture area: 0.25667 cm ). Further investigation reveals that Ge bidirectional diffusion simultaneously occurs toward the CZTSSe absorber and MoSe layer at the back interface while being selenized. That is, some Ge element from the GeO diffuses into the CZTSSe absorber layer to afford Ge-doped absorbers, which can significantly reduce the defect density and band tailing, and facilitate quasi-Fermi level split by relatively higher hole concentration. Meanwhile, a small amount of Ge element also participates in the formation of MoSe at the back interface, thus enhancing the work function of MoSe and effectively separating photoinduced carriers. This work highlights the synergistic effect of Ge element toward the bulk absorber and the back interface and also provides an easy-handling way to achieve high-performance CZTSSe solar cells.
针对铜锌锡硫硒(CZTSSe)太阳能电池中存在的较大开路电压(V)损失问题,通过在钼(Mo)衬底上直接引入一层薄的GeO层,开发出一种同时调节背界面和抑制CZTSSe吸收层体缺陷的新有效策略。对于最优器件,实现了高达13.14%的功率转换效率(功率-效率),V为547 mV,其认证效率为12.8%(孔径面积:0.25667平方厘米)。进一步研究表明,在硒化过程中,Ge向背界面处的CZTSSe吸收层和MoSe层同时发生双向扩散。也就是说,来自GeO的一些Ge元素扩散到CZTSSe吸收层中形成Ge掺杂的吸收层,这可以显著降低缺陷密度和能带拖尾,并通过相对较高的空穴浓度促进准费米能级分裂。同时,少量的Ge元素也参与背界面处MoSe的形成,从而提高MoSe的功函数并有效分离光生载流子。这项工作突出了Ge元素对体吸收层和背界面的协同作用,也提供了一种实现高性能CZTSSe太阳能电池的简便方法。