Suppr超能文献

冥想对全脑结构和功能连接的影响。

Meditation-induced effects on whole-brain structural and effective connectivity.

机构信息

Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, C Ramon Trias Fargas, 25-27, 08005, Barcelona, Catalonia, Spain.

Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.

出版信息

Brain Struct Funct. 2022 Jul;227(6):2087-2102. doi: 10.1007/s00429-022-02496-9. Epub 2022 May 6.

Abstract

In the past decades, there has been a growing scientific interest in characterizing neural correlates of meditation training. Nonetheless, the mechanisms underlying meditation remain elusive. In the present work, we investigated meditation-related changes in functional dynamics and structural connectivity (SC). For this purpose, we scanned experienced meditators and control (naive) subjects using magnetic resonance imaging (MRI) to acquire structural and functional data during two conditions, resting-state and meditation (focused attention on breathing). In this way, we aimed to characterize and distinguish both short-term and long-term modifications in the brain's structure and function. First, to analyze the fMRI data, we calculated whole-brain effective connectivity (EC) estimates, relying on a dynamical network model to replicate BOLD signals' spatio-temporal structure, akin to functional connectivity (FC) with lagged correlations. We compared the estimated EC, FC, and SC links as features to train classifiers to predict behavioral conditions and group identity. Then, we performed a network-based analysis of anatomical connectivity. We demonstrated through a machine-learning approach that EC features were more informative than FC and SC solely. We showed that the most informative EC links that discriminated between meditators and controls involved several large-scale networks mainly within the left hemisphere. Moreover, we found that differences in the functional domain were reflected to a smaller extent in changes at the anatomical level as well. The network-based analysis of anatomical pathways revealed strengthened connectivity for meditators compared to controls between four areas in the left hemisphere belonging to the somatomotor, dorsal attention, subcortical and visual networks. Overall, the results of our whole-brain model-based approach revealed a mechanism underlying meditation by providing causal relationships at the structure-function level.

摘要

在过去的几十年中,人们对刻画冥想训练的神经相关性产生了浓厚的科学兴趣。尽管如此,冥想的机制仍然难以捉摸。在本研究中,我们研究了与冥想相关的功能动态和结构连接(SC)变化。为此,我们使用磁共振成像(MRI)扫描经验丰富的冥想者和对照组(无经验)被试,在两种条件下采集结构和功能数据:静息状态和冥想(专注于呼吸)。通过这种方式,我们旨在描述和区分大脑结构和功能的短期和长期变化。首先,为了分析 fMRI 数据,我们计算了全脑有效连接(EC)估计值,依靠动力网络模型复制 BOLD 信号的时空结构,类似于具有滞后相关的功能连接(FC)。我们将估计的 EC、FC 和 SC 链路作为特征进行比较,以训练分类器来预测行为条件和组身份。然后,我们进行了基于网络的解剖连接分析。我们通过机器学习方法证明,EC 特征比 FC 和 SC 更具信息性。我们表明,区分冥想者和对照组的最具信息量的 EC 链接涉及多个主要位于左半球的大规模网络。此外,我们发现,功能域的差异在解剖水平的变化中反映得较少。对解剖途径的基于网络的分析表明,与对照组相比,冥想者左半球的四个区域(躯体运动、背侧注意力、皮质下和视觉网络)之间的连接增强。总体而言,我们的全脑基于模型的方法的结果通过在结构-功能水平上提供因果关系,揭示了冥想的潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b230/9232427/ed9a3a7a8a79/429_2022_2496_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验