Suppr超能文献

统一的湍流动力学框架区分不同的大脑状态。

Unifying turbulent dynamics framework distinguishes different brain states.

机构信息

Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.

Universidad de San Andrés, Buenos Aires, Argentina.

出版信息

Commun Biol. 2022 Jun 29;5(1):638. doi: 10.1038/s42003-022-03576-6.

Abstract

Significant advances have been made by identifying the levels of synchrony of the underlying dynamics of a given brain state. This research has demonstrated that non-conscious dynamics tend to be more synchronous than in conscious states, which are more asynchronous. Here we go beyond this dichotomy to demonstrate that different brain states are underpinned by dissociable spatiotemporal dynamics. We investigated human neuroimaging data from different brain states (resting state, meditation, deep sleep and disorders of consciousness after coma). The model-free approach was based on Kuramoto's turbulence framework using coupled oscillators. This was extended by a measure of the information cascade across spatial scales. Complementarily, the model-based approach used exhaustive in silico perturbations of whole-brain models fitted to these measures. This allowed studying of the information encoding capabilities in given brain states. Overall, this framework demonstrates that elements from turbulence theory provide excellent tools for describing and differentiating between brain states.

摘要

通过确定给定脑状态下潜在动力学的同步水平,已经取得了重大进展。这项研究表明,非意识动力学往往比意识状态更同步,而意识状态则更不同步。在这里,我们超越了这种二分法,证明了不同的大脑状态是由可分离的时空动力学支撑的。我们研究了来自不同脑状态(静息状态、冥想、深度睡眠和昏迷后意识障碍)的人类神经影像学数据。无模型方法基于 Kuramoto 的湍流框架,使用耦合振荡器。通过测量跨空间尺度的信息级联,对其进行了扩展。作为补充,基于模型的方法使用了针对这些测量值进行的全脑模型的详尽计算机内扰动。这使得可以研究给定脑状态中的信息编码能力。总的来说,这个框架表明,湍流理论中的元素为描述和区分大脑状态提供了极好的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5e3/9243255/53aead04b719/42003_2022_3576_Fig1_HTML.jpg

相似文献

1
Unifying turbulent dynamics framework distinguishes different brain states.
Commun Biol. 2022 Jun 29;5(1):638. doi: 10.1038/s42003-022-03576-6.
2
Re-awakening the brain: Forcing transitions in disorders of consciousness by external in silico perturbation.
PLoS Comput Biol. 2024 May 3;20(5):e1011350. doi: 10.1371/journal.pcbi.1011350. eCollection 2024 May.
3
Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness.
PLoS Comput Biol. 2021 Jul 27;17(7):e1009139. doi: 10.1371/journal.pcbi.1009139. eCollection 2021 Jul.
4
The evolution of whole-brain turbulent dynamics during recovery from traumatic brain injury.
Netw Neurosci. 2024 Apr 1;8(1):158-177. doi: 10.1162/netn_a_00346. eCollection 2024.
5
Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics.
Neuroscientist. 2018 Jun;24(3):277-293. doi: 10.1177/1073858417728032. Epub 2017 Sep 1.
6
Inducing a meditative state by artificial perturbations: A mechanistic understanding of brain dynamics underlying meditation.
Netw Neurosci. 2024 Jul 1;8(2):517-540. doi: 10.1162/netn_a_00366. eCollection 2024.
7
Turbulent-like Dynamics in the Human Brain.
Cell Rep. 2020 Dec 8;33(10):108471. doi: 10.1016/j.celrep.2020.108471.
8
Characterizing the Dynamical Complexity Underlying Meditation.
Front Syst Neurosci. 2019 Jul 10;13:27. doi: 10.3389/fnsys.2019.00027. eCollection 2019.
9
Measures of metabolism and complexity in the brain of patients with disorders of consciousness.
Neuroimage Clin. 2017 Feb 6;14:354-362. doi: 10.1016/j.nicl.2017.02.002. eCollection 2017.
10
Pharmacologically informed machine learning approach for identifying pathological states of unconsciousness via resting-state fMRI.
Neuroimage. 2020 Feb 1;206:116316. doi: 10.1016/j.neuroimage.2019.116316. Epub 2019 Oct 29.

引用本文的文献

3
Modeling Emotional Arousal With Turbulence Measured by EEG.
Psychophysiology. 2025 Jun;62(6):e70093. doi: 10.1111/psyp.70093.
4
Reaction-diffusion model for brain spacetime dynamics.
Biophys Rep (N Y). 2025 Jun 16;5(3):100220. doi: 10.1016/j.bpr.2025.100220.
5
Nonequilibrium brain dynamics elicited as the origin of perturbative complexity.
PLoS Comput Biol. 2025 Jun 6;21(6):e1013150. doi: 10.1371/journal.pcbi.1013150. eCollection 2025 Jun.
6
Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders.
Research (Wash D C). 2025 Apr 5;8:0648. doi: 10.34133/research.0648. eCollection 2025.
7
Multiple patterns of EEG parameters and their role in the prediction of patients with prolonged disorders of consciousness.
Front Neurosci. 2025 Feb 5;19:1492225. doi: 10.3389/fnins.2025.1492225. eCollection 2025.
9
Neural mass modeling for the masses: Democratizing access to whole-brain biophysical modeling with FastDMF.
Netw Neurosci. 2024 Dec 10;8(4):1590-1612. doi: 10.1162/netn_a_00410. eCollection 2024.
10
Homeodynamic feedback inhibition control in whole-brain simulations.
PLoS Comput Biol. 2024 Dec 2;20(12):e1012595. doi: 10.1371/journal.pcbi.1012595. eCollection 2024 Dec.

本文引用的文献

1
Effects of classic psychedelic drugs on turbulent signatures in brain dynamics.
Netw Neurosci. 2022 Oct 1;6(4):1104-1124. doi: 10.1162/netn_a_00250. eCollection 2022.
2
Meditation-induced effects on whole-brain structural and effective connectivity.
Brain Struct Funct. 2022 Jul;227(6):2087-2102. doi: 10.1007/s00429-022-02496-9. Epub 2022 May 6.
3
The effect of external stimulation on functional networks in the aging healthy human brain.
Cereb Cortex. 2022 Dec 15;33(1):235-245. doi: 10.1093/cercor/bhac064.
4
Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics.
Commun Biol. 2021 Sep 6;4(1):1037. doi: 10.1038/s42003-021-02537-9.
5
Rare long-range cortical connections enhance human information processing.
Curr Biol. 2021 Oct 25;31(20):4436-4448.e5. doi: 10.1016/j.cub.2021.07.064. Epub 2021 Aug 25.
6
Perturbations in dynamical models of whole-brain activity dissociate between the level and stability of consciousness.
PLoS Comput Biol. 2021 Jul 27;17(7):e1009139. doi: 10.1371/journal.pcbi.1009139. eCollection 2021 Jul.
7
Leonardo da Vinci and the search for order in neuroscience.
Curr Biol. 2021 Jun 7;31(11):R704-R709. doi: 10.1016/j.cub.2021.03.098.
8
Turbulent-like Dynamics in the Human Brain.
Cell Rep. 2020 Dec 8;33(10):108471. doi: 10.1016/j.celrep.2020.108471.
9
Brain States and Transitions: Insights from Computational Neuroscience.
Cell Rep. 2020 Sep 8;32(10):108128. doi: 10.1016/j.celrep.2020.108128.
10
Modeling regional changes in dynamic stability during sleep and wakefulness.
Neuroimage. 2020 Jul 15;215:116833. doi: 10.1016/j.neuroimage.2020.116833. Epub 2020 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验