Department of Statistics, University of California, Los Angeles, Los Angeles, California, USA.
Department of Mathematics, California State University, Fullerton, Fullerton, California, USA.
Stat Med. 2022 Jul 30;41(17):3380-3397. doi: 10.1002/sim.9423. Epub 2022 May 6.
The aim of this article is to provide an overview of the orthogonal array composite design (OACD) methodology, illustrate the various advantages, and provide a real-world application. An OACD combines a two-level factorial design with a three-level orthogonal array and it can be used as an alternative to existing composite designs for building response surface models. We compare the -efficiencies of OACDs relative to the commonly used central composite design (CCD) when there are a few missing observations and demonstrate that OACDs are more robust to missing observations for two scenarios. The first scenario assumes one missing observation either from one factorial point or one additional point. The second scenario assumes two missing observations either from two factorial points or from two additional points, or from one factorial point and one additional point. Furthermore, we compare OACDs and CCDs in terms of -optimality for precise predictions. Lastly, a real-world application of an OACD for a tuberculosis drug combination study is provided.
本文旨在概述正交数组复合设计(OACD)方法,阐述其各种优势,并提供一个实际应用案例。OACD 将两水平析因设计与三水平正交数组相结合,可以作为现有复合设计的替代方法,用于构建响应面模型。当存在少量缺失观测值时,我们比较了 OACD 相对于常用的中心复合设计(CCD)的 -效率,并证明 OACD 在两种情况下对缺失观测值更稳健。第一种情况假设在一个析因点或一个附加点上缺失一个观测值。第二种情况假设在两个析因点或两个附加点上各缺失一个观测值,或者在一个析因点和一个附加点上各缺失一个观测值。此外,我们还比较了 OACD 和 CCD 在精确预测方面的 -最优性。最后,提供了一个 OACD 在结核病药物联合研究中的实际应用案例。