文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SuperPred 3.0:药物分类和靶标预测——一种机器学习方法。

SuperPred 3.0: drug classification and target prediction-a machine learning approach.

机构信息

Charité - Universitätsmedizin Berlin, Institute of Physiology and Science IT, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, 10117 Berlin, Germany.

出版信息

Nucleic Acids Res. 2022 Jul 5;50(W1):W726-W731. doi: 10.1093/nar/gkac297.


DOI:10.1093/nar/gkac297
PMID:35524552
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9252837/
Abstract

Since the last published update in 2014, the SuperPred webserver has been continuously developed to offer state-of-the-art models for drug classification according to ATC classes and target prediction. For the first time, a thoroughly filtered ATC dataset, that is suitable for accurate predictions, is provided along with detailed information on the achieved predictions. This aims to overcome the challenges in comparing different published prediction methods, since performance can vary greatly depending on the training dataset used. Additionally, both ATC and target prediction have been reworked and are now based on machine learning models instead of overall structural similarity, stressing the importance of functional groups for the mechanism of action of small molecule substances. Additionally, the dataset for the target prediction has been extensively filtered and is no longer only based on confirmed binders but also includes non-binding substances to reduce false positives. Using these methods, accuracy for the ATC prediction could be increased by almost 5% to 80.5% compared to the previous version, and additionally the scoring function now offers values which are easily assessable at first glance. SuperPred 3.0 is publicly available without the need for registration at: https://prediction.charite.de/index.php.

摘要

自 2014 年最后一次更新以来,SuperPred 网络服务器一直在不断发展,以提供根据 ATC 类别和目标预测进行药物分类的最先进模型。首次提供了一个经过彻底过滤的 ATC 数据集,该数据集适合进行准确预测,并提供了有关所实现预测的详细信息。这旨在克服在比较不同已发布的预测方法时所面临的挑战,因为性能可能因所使用的训练数据集而有很大差异。此外,ATC 和目标预测都经过了重新设计,现在基于机器学习模型,而不是整体结构相似性,强调了功能基团对小分子物质作用机制的重要性。此外,目标预测的数据集已被广泛过滤,不再仅基于已确认的结合物,还包括非结合物,以减少假阳性。使用这些方法,与上一版本相比,ATC 预测的准确性可提高近 5%至 80.5%,此外,评分函数现在提供了易于一眼评估的值。SuperPred 3.0 可在无需注册的情况下在以下网址公开使用:https://prediction.charite.de/index.php。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1939/9252837/8b396f57f046/gkac297fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1939/9252837/9464042e411d/gkac297figgra1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1939/9252837/df4b33bd7504/gkac297fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1939/9252837/8b396f57f046/gkac297fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1939/9252837/9464042e411d/gkac297figgra1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1939/9252837/df4b33bd7504/gkac297fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1939/9252837/8b396f57f046/gkac297fig2.jpg

相似文献

[1]
SuperPred 3.0: drug classification and target prediction-a machine learning approach.

Nucleic Acids Res. 2022-7-5

[2]
SuperPred: update on drug classification and target prediction.

Nucleic Acids Res. 2014-5-30

[3]
Network predicting drug's anatomical therapeutic chemical code.

Bioinformatics. 2013-4-5

[4]
Convolutional Neural Networks for ATC Classification.

Curr Pharm Des. 2018

[5]
SuperPred: drug classification and target prediction.

Nucleic Acids Res. 2008-7-1

[6]
MOST: most-similar ligand based approach to target prediction.

BMC Bioinformatics. 2017-3-11

[7]
A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.

Mol Inform. 2020-5

[8]
A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes.

Mol Biosyst. 2014-4

[9]
A Machine Learning-Based Model to Predict Acute Traumatic Coagulopathy in Trauma Patients Upon Emergency Hospitalization.

Clin Appl Thromb Hemost. 2020

[10]
Predicting Melting Points of Organic Molecules: Applications to Aqueous Solubility Prediction Using the General Solubility Equation.

Mol Inform. 2015-11

引用本文的文献

[1]
Potential therapeutic role of sex steroids in treating sarcopenia: a network pharmacology and molecular dynamics study.

BMC Pharmacol Toxicol. 2025-9-1

[2]
Environmental exposure to perfluorooctane sulfonate and its role in esophageal cancer progression: a comprehensive bioinformatics and experimental study.

Sci Rep. 2025-8-26

[3]
Integrative metabolomics and system pharmacology reveal the antioxidant blueprint of Psoralea corylifolia.

Sci Rep. 2025-8-5

[4]
Study on the mechanism of no. 8 burn ointment in burn treatment based on network pharmacology and experimental verification.

Front Pharmacol. 2025-7-21

[5]
Pharmacokinetic variability of 20(S)-protopanaxadiol-type ginsenosides Rb1, rd, and compound K from Korean red ginseng in experimental rodents.

Sci Rep. 2025-8-1

[6]
Untargeted Diversity-Oriented Synthesis for the Discovery of New Antitumor Agents: An Integrated Approach of Inverse Virtual Screening, Bioinformatics, and Omics for Target Deconvolution.

J Med Chem. 2025-8-14

[7]
Multi-omics analysis of the anti-cancer effects of curcumol in endometrial carcinoma.

Front Pharmacol. 2025-7-3

[8]
Evaluation of the antibacterial efficacy of combinations of Garcinia mangostana, Curcuma comosa, and Acanthus ebracteatus for acne vulgaris treatment: in Silico and in vitro validation.

BMC Complement Med Ther. 2025-7-10

[9]
Target identification of natural products in cancer with chemical proteomics and artificial intelligence approaches.

Cancer Biol Med. 2025-7-9

[10]
Network pharmacology of olive stem extract, UPLC-HR-QTOF-MS profiling and antiviral activities aligned with UN sustainable development goals.

Sci Rep. 2025-7-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索