Suppr超能文献

交流电助力具有几何约束的非牛顿流体液滴形成的动力学。

Dynamics of alternating current electric field-assisted non-Newtonian droplet formation with geometry confinement.

机构信息

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.

Research Institute of Aero-Engine, Beihang University, Beijing, P. R. China.

出版信息

Electrophoresis. 2022 Nov;43(21-22):2120-2129. doi: 10.1002/elps.202200056. Epub 2022 May 22.

Abstract

Recently, microfluidic techniques have been widely applied for biomaterial droplet manipulations due to their precision and efficiency. Many biosamples such as deoxyribonucleic acid and blood samples are non-Newtonian fluids with complex rheology, which brings challenges in control over them. The electric field is characterized by fast response and excellent adaptation to control microscale fluid flow. Here, we systematically investigate the alternating current electric field-assisted formation of non-Newtonian droplet in a flow-focusing microchannel with different sizes of channel orifice. The dependencies of flow conditions, microchannel geometries and electric parameters on the dynamics of non-Newtonian droplet formation are thus elucidated. An effective capacitance electric model is developed to reveal and predict the interaction between the fluid flow and the electric field. Furthermore, the flow field of non-Newtonian droplet formation is captured via the high-speed microparticle image velocimetry system. The characteristics of the regimes of droplet formation and the influences of the channel orifice are revealed quantitatively. Our work offers elaborate references to the control of non-Newtonian droplet formation, which benefits a wide range of applications in biology and chemistry.

摘要

最近,由于微流控技术的精确性和高效性,它被广泛应用于生物材料液滴的操控。许多生物样本,如脱氧核糖核酸和血液样本,都是具有复杂流变学性质的非牛顿流体,这给它们的控制带来了挑战。电场的特点是响应速度快,非常适合控制微尺度流体流动。在这里,我们系统地研究了在不同尺寸的通道口的流聚焦微通道中,交流电辅助形成非牛顿液滴的过程。阐明了流动条件、微通道几何形状和电参数对非牛顿液滴形成动力学的依赖性。建立了有效的电容电场模型,以揭示和预测流体流动与电场之间的相互作用。此外,还通过高速微粒子图像测速系统捕捉到了非牛顿液滴形成时的流场。定量揭示了液滴形成的各个阶段的特征以及通道口的影响。我们的工作为非牛顿液滴的形成控制提供了详细的参考,这对生物学和化学领域的广泛应用有很大的益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验