Kang Xiyang, Dong Yutao, Guan Hui, Al-Tahan Mohammed A, Zhang Jianmin
College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China.
College of Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
J Colloid Interface Sci. 2022 Sep 15;622:515-525. doi: 10.1016/j.jcis.2022.04.156. Epub 2022 Apr 30.
For the better development of lithium-sulfur (Li-S) batteries, it is necessary to fabricate sulfur hosts with cheap, rapid sulfur reaction dynamic and inhibiting the shuttling effect of lithium polysulfides (LiPSs). Herein, four hollow cubic materials with two kinds of nitrogen-doped carbon derived from Prussian blue analogues (PBA) precursor, CoS/MnS/NC@NC-400, CoS/MnS/NC@NC-500, CoS/MnS/NC@NC-600 and CoS/MnS/NC@NC-700, are reported when the vulcanization temperatures are regulated at 400 °C, 500 °C, 600 °C and 700 °C, respectively. Among them, CoS/MnS/NC@NC-400, CoS/MnS/NC@NC-500 and CoS/MnS/NC@NC-600 have the similar hollow cubic structure, which can physically confine the LiPSs's shuttle, however, the Co vacancies of CoS in the CoS/MnS/NC@NC-600 can promote the rearrangement of surface electrons, which is beneficial to the diffusion of Li/e, improving the electrochemical reaction kinetics. As for the CoS/MnS/NC@NC-700 with the same substance but almost collapsed structure, the CoS/MnS/NC@NC-600 can accommodate the volume expansion of sulfur conversion. In the four sulfur-host materials, the CoS/MnS/NC@NC-600 not only displays the outstanding adsorption ability on LiPSs, but also presents the best electrocatalytic activity in the LiS potentiostatic deposition experiments and active sulfur reduction/oxidation conversion reactions, greatly promoting the electrochemical performances of Li-S batteries. The S@CoS/MnS/NC@NC-600 cathode can deliver 1010.2 mA h g at 0.5 C and maintain 651.1 mA h g after 200 cycles. In addition, the in-situ X-ray diffraction (in-situ XRD) test reveals that the sulfur conversion mechanism is the processes of the α-S → LiS → β-S (first cycle), then β-S ↔ LiS during the subsequent cycles. Based on the fundamental understanding of the design and preparation of CoS/MnS/NC@NC hosts with the desired adsorption and catalysis functions, the work can provide new insights and reveal the defect-engineering to develop the advanced Li-S batteries.
为了锂硫(Li-S)电池的更好发展,有必要制备具有廉价、快速的硫反应动力学且能抑制多硫化锂(LiPSs)穿梭效应的硫宿主。在此,报道了四种由普鲁士蓝类似物(PBA)前驱体衍生的两种氮掺杂碳的空心立方材料,即CoS/MnS/NC@NC - 400、CoS/MnS/NC@NC - 500、CoS/MnS/NC@NC - 600和CoS/MnS/NC@NC - 700,硫化温度分别调控在400℃、500℃、600℃和700℃。其中,CoS/MnS/NC@NC - 400、CoS/MnS/NC@NC - 500和CoS/MnS/NC@NC - 600具有相似的空心立方结构,可物理限制LiPSs的穿梭,然而,CoS/MnS/NC@NC - 600中CoS的Co空位可促进表面电子重排,有利于Li/e的扩散,改善电化学反应动力学。至于具有相同物质但结构几乎坍塌的CoS/MnS/NC@NC - 700,CoS/MnS/NC@NC - 600可适应硫转化的体积膨胀。在这四种硫宿主材料中,CoS/MnS/NC@NC - 600不仅对LiPSs表现出出色的吸附能力,而且在LiS恒电位沉积实验和活性硫还原/氧化转化反应中呈现出最佳的电催化活性,极大地提升了Li-S电池的电化学性能。S@CoS/MnS/NC@NC - 600正极在0.5 C下可提供1010.2 mA h g的容量,200次循环后保持651.1 mA h g。此外,原位X射线衍射(in-situ XRD)测试表明,硫转化机制是α-S→LiS→β-S(第一个循环)的过程,随后循环中是β-S↔LiS。基于对具有所需吸附和催化功能的CoS/MnS/NC@NC宿主设计与制备的基本理解,这项工作可为开发先进的Li-S电池提供新的见解并揭示缺陷工程。