Orsi Enrico, Schada von Borzyskowski Lennart, Noack Stephan, Nikel Pablo I, Lindner Steffen N
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Institute of Biology Leiden, Leiden University, 2333 BE, Leiden, The Netherlands.
Nat Commun. 2024 Apr 24;15(1):3447. doi: 10.1038/s41467-024-46574-4.
Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.
要实现具有成本竞争力的生物基工艺,需要开发稳定且具有选择性的生物催化剂。通过体外酶表征和工程改造来实现这些生物催化剂,大多是低通量且劳动密集型的。因此,在减少人工操作的同时提高通量的策略正越来越受到关注,例如体内筛选和定向进化方案。机器学习等计算工具通过拓宽可探索的设计空间,进一步支持酶工程工作。在此,我们提出了一种针对酶工程挑战的综合解决方案,通过这种方案可以实现机器学习引导的自动化工作流程(包括文库构建、超突变系统的实施、适应性实验室进化以及体内生长偶联选择),从而加快研发出更优质生物催化剂的进程。