Suppr超能文献

社论:物理流体动力学中的数学问题:第二部分。

Editorial: Mathematical problems in physical fluid dynamics: part II.

机构信息

Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada.

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210057. doi: 10.1098/rsta.2021.0057. Epub 2022 May 9.

Abstract

Fluid dynamics is a research area lying at the crossroads of physics and applied mathematics with an ever-expanding range of applications in natural sciences and engineering. However, despite decades of concerted research efforts, this area abounds with many fundamental questions that still remain unanswered. At the heart of these problems often lie mathematical models, usually in the form of partial differential equations, and many of the open questions concern the validity of these models and what can be learned from them about the physical problems. In recent years, significant progress has been made on a number of open problems in this area, often using approaches that transcend traditional discipline boundaries by combining modern methods of modelling, computation and mathematical analysis. The two-part theme issue aims to represent the breadth of these approaches, focusing on problems that are mathematical in nature but help to understand aspects of real physical importance such as fluid dynamical stability, transport, mixing, dissipation and vortex dynamics. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

摘要

流体动力学是物理学和应用数学的交叉领域,其应用范围在自然科学和工程领域不断扩大。然而,尽管经过几十年的协同研究,这个领域仍然存在许多尚未解决的基本问题。这些问题的核心往往是数学模型,通常以偏微分方程的形式存在,而许多悬而未决的问题都涉及到这些模型的有效性,以及可以从这些模型中学到什么关于物理问题。近年来,在这一领域的许多开放性问题上都取得了重大进展,这些进展通常采用超越传统学科界限的方法,通过结合现代建模、计算和数学分析方法来实现。本期特刊的两部分主题旨在代表这些方法的广泛性,重点关注本质上是数学问题但有助于理解实际物理重要方面的问题,如流体动力稳定性、输运、混合、耗散和涡动力学。本文是特刊“物理流体动力学中的数学问题(第二部分)”的一部分。

相似文献

1
Editorial: Mathematical problems in physical fluid dynamics: part II.社论:物理流体动力学中的数学问题:第二部分。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210057. doi: 10.1098/rsta.2021.0057. Epub 2022 May 9.
2
Editorial: Mathematical problems in physical fluid dynamics: part I.社论:物理流体动力学中的数学问题:第一部分。
Philos Trans A Math Phys Eng Sci. 2022 Jun 13;380(2225):20210056. doi: 10.1098/rsta.2021.0056. Epub 2022 Apr 25.
4
Editorial: Scaling the Turbulence Edifice.社论:构建动荡大厦
Philos Trans A Math Phys Eng Sci. 2022 Mar 7;380(2218):20210101. doi: 10.1098/rsta.2021.0101. Epub 2022 Jan 17.
5
Remarks on stationary and uniformly rotating vortex sheets: flexibility results.定常和一致旋转涡面的评述:柔韧性结果。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210045. doi: 10.1098/rsta.2021.0045. Epub 2022 May 9.
6
Entropy and convexity for nonlinear partial differential equations.非线性偏微分方程的熵和凸性。
Philos Trans A Math Phys Eng Sci. 2013 Nov 18;371(2005):20120340. doi: 10.1098/rsta.2012.0340. Print 2013 Dec 28.
8
Helicity and singular structures in fluid dynamics.流动力学中的螺旋性和奇异结构。
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3663-70. doi: 10.1073/pnas.1400277111. Epub 2014 Feb 11.

本文引用的文献

3
Self-similarity in turbulence and its applications.
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210048. doi: 10.1098/rsta.2021.0048. Epub 2022 May 9.
4
Extreme events in transitional turbulence.过渡湍流中的极端事件。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210036. doi: 10.1098/rsta.2021.0036. Epub 2022 May 9.
5
On the dynamics of point vortices for the two-dimensional Euler equation with vorticity.关于具有涡度的二维欧拉方程的点涡动力学
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210046. doi: 10.1098/rsta.2021.0046. Epub 2022 May 9.
6
Remarks on stationary and uniformly rotating vortex sheets: flexibility results.定常和一致旋转涡面的评述:柔韧性结果。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210045. doi: 10.1098/rsta.2021.0045. Epub 2022 May 9.
7
Self-regularization in turbulence from the Kolmogorov 4/5-law and alignment.基于柯尔莫哥洛夫4/5定律和排列的湍流自正则化。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210033. doi: 10.1098/rsta.2021.0033. Epub 2022 May 9.
8
On the Prandtl-Kolmogorov 1-equation model of turbulence.关于湍流的普朗特 - 柯尔莫哥洛夫单方程模型。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210054. doi: 10.1098/rsta.2021.0054. Epub 2022 May 9.
9
Continuing invariant solutions towards the turbulent flow.朝向湍流的持续不变解。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210031. doi: 10.1098/rsta.2021.0031. Epub 2022 May 9.
10
Self-similar hierarchy of coherent tubular vortices in turbulence.湍流中相干管状涡旋的自相似层次结构。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210053. doi: 10.1098/rsta.2021.0053. Epub 2022 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验