Ceci Stefano, Seis Christian
Institut für Analysis und Numerik, Westfälische Wilhelms-Universität Münster, Germany.
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210046. doi: 10.1098/rsta.2021.0046. Epub 2022 May 9.
We study the evolution of solutions to the two-dimensional Euler equations whose vorticity is sharply concentrated in the Wasserstein sense around a finite number of points. Under the assumption that the vorticity is merely [Formula: see text] integrable for some [Formula: see text], we show that the evolving vortex regions remain concentrated around points, and these points are close to solutions to the Helmholtz-Kirchhoff point vortex system. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.
我们研究二维欧拉方程解的演化,其涡度在瓦瑟斯坦意义下围绕有限个点急剧集中。在涡度对于某个[公式:见正文]仅为[公式:见正文]可积的假设下,我们表明演化的涡旋区域仍集中在点周围,并且这些点接近于亥姆霍兹 - 基尔霍夫点涡旋系统的解。本文是主题为“物理流体动力学中的数学问题(第2部分)”的一部分。