Chen Ruimin, Rao Prahalada, Lu Yan, Reutzel Edward W, Yang Hui
The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA, USA.
Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
Addit Manuf. 2021;39. doi: 10.1016/j.addma.2021.101861.
Powder bed fusion (PBF) additive manufacturing (AM) provides a great level of flexibility in the design-driven build of metal products. However, the more complex the design, the more difficult it becomes to control the quality of AM builds. The quality challenge persistently hampers the widespread application of AM technology. Advanced imaging (e.g., X-ray computed tomography scans and high-resolution optical images) has been increasingly explored to enhance the visibility of information and improve the AM quality control. Realizing the full potential of imaging data depends on the advent of information processing methodologies for the analysis of design-quality interactions. This paper presents a design of AM experiment to investigate how design parameters (e.g., build orientation, thin-wall width, thin-wall height, and contour space) interact with quality characteristics in thin-wall builds. Note that the build orientation refers to the position of thin-walls in relation to the recoating direction on the plate, and the contour space indicates the width between rectangle hatches. First, we develop a novel generalized recurrence network (GRN) to represent the AM spatial image data. Then, GRN quantifiers, namely degree, betweenness, pagerank, closeness, and eigenvector centralities, are extracted to characterize the quality of layerwise builds. Further, we establish a regression model to predict how the design complexity impacts GRN behaviors in each layer of thin-wall builds. Experimental results show that network features are sensitive to build orientations, width, height, and contour space under the significant level = 0.05. Thin-walls with the width bigger than 0.1 mm printed under orientation 0° are found to yield better quality compared to 60° and 90°. Also, thin-walls build with orientation 60° are more sensitive to the changes in contour space compare to the other two orientations. As a result, the orientation 60° should be avoided while printing thin-wall structures. The proposed design-quality analysis shows great potential to optimize engineering design and enhance the quality of PBF-AM builds.
粉末床熔融(PBF)增材制造(AM)在金属产品的设计驱动制造中提供了高度的灵活性。然而,设计越复杂,控制增材制造构建的质量就越困难。质量挑战一直阻碍着增材制造技术的广泛应用。人们越来越多地探索先进成像技术(如X射线计算机断层扫描和高分辨率光学图像),以提高信息的可见性并改善增材制造的质量控制。要实现成像数据的全部潜力,取决于用于分析设计与质量相互作用的信息处理方法的出现。本文提出了一种增材制造实验设计,以研究设计参数(如构建方向、薄壁宽度、薄壁高度和轮廓间距)如何与薄壁构建中的质量特性相互作用。请注意,构建方向是指薄壁相对于板上重涂方向的位置,轮廓间距表示矩形填充之间的宽度。首先,我们开发了一种新颖的广义递归网络(GRN)来表示增材制造的空间图像数据。然后,提取GRN量化指标,即度中心性、介数中心性、PageRank、接近中心性和特征向量中心性,以表征逐层构建的质量。此外,我们建立了一个回归模型,以预测设计复杂性如何影响薄壁构建各层中的GRN行为。实验结果表明,在显著性水平α = 0.05下,网络特征对构建方向、宽度、高度和轮廓间距敏感。发现宽度大于0.1mm的薄壁在0°方向下打印时,与60°和90°方向相比,质量更好。此外,与其他两个方向相比,60°方向构建的薄壁对轮廓间距的变化更敏感。因此,在打印薄壁结构时应避免60°方向。所提出的设计质量分析在优化工程设计和提高PBF-AM构建质量方面显示出巨大潜力。