Wang Yujie, Chen Cheng-Bang, Imamura Toshihiro, Tapia Ignacio E, Somers Virend K, Zee Phyllis C, Lim Diane C
Department of Industrial and Systems Engineering, University of Miami, Coral Gables, FL, United States.
Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Phialdelphia, PA, United States.
Front Physiol. 2024 Jul 25;15:1425582. doi: 10.3389/fphys.2024.1425582. eCollection 2024.
Recognizing emotions from electroencephalography (EEG) signals is a challenging task due to the complex, nonlinear, and nonstationary characteristics of brain activity. Traditional methods often fail to capture these subtle dynamics, while deep learning approaches lack explainability. In this research, we introduce a novel three-phase methodology integrating manifold embedding, multilevel heterogeneous recurrence analysis (MHRA), and ensemble learning to address these limitations in EEG-based emotion recognition.
The proposed methodology was evaluated using the SJTU-SEED IV database. We first applied uniform manifold approximation and projection (UMAP) for manifold embedding of the 62-lead EEG signals into a lower-dimensional space. We then developed MHRA to characterize the complex recurrence dynamics of brain activity across multiple transition levels. Finally, we employed tree-based ensemble learning methods to classify four emotions (neutral, sad, fear, happy) based on the extracted MHRA features.
Our approach achieved high performance, with an accuracy of 0.7885 and an AUC of 0.7552, outperforming existing methods on the same dataset. Additionally, our methodology provided the most consistent recognition performance across different emotions. Sensitivity analysis revealed specific MHRA metrics that were strongly associated with each emotion, offering valuable insights into the underlying neural dynamics.
This study presents a novel framework for EEG-based emotion recognition that effectively captures the complex nonlinear and nonstationary dynamics of brain activity while maintaining explainability. The proposed methodology offers significant potential for advancing our understanding of emotional processing and developing more reliable emotion recognition systems with broad applications in healthcare and beyond.
由于大脑活动具有复杂、非线性和非平稳的特性,从脑电图(EEG)信号中识别情绪是一项具有挑战性的任务。传统方法往往无法捕捉这些微妙的动态变化,而深度学习方法缺乏可解释性。在本研究中,我们引入了一种新颖的三相方法,该方法集成了流形嵌入、多级异构递归分析(MHRA)和集成学习,以解决基于EEG的情绪识别中的这些局限性。
使用上海交通大学情绪识别数据库IV(SJTU-SEED IV)对所提出的方法进行评估。我们首先应用均匀流形近似和投影(UMAP)将62导联的EEG信号嵌入到低维空间中进行流形嵌入。然后,我们开发了MHRA来表征跨多个转换水平的大脑活动的复杂递归动态。最后,我们采用基于树的集成学习方法,根据提取的MHRA特征对四种情绪(中性、悲伤、恐惧、快乐)进行分类。
我们的方法取得了高性能,准确率为0.7885,曲线下面积(AUC)为0.7552,优于同一数据集上的现有方法。此外,我们的方法在不同情绪下提供了最一致的识别性能。敏感性分析揭示了与每种情绪密切相关的特定MHRA指标,为潜在的神经动力学提供了有价值的见解。
本研究提出了一种基于EEG的情绪识别新框架,该框架有效地捕捉了大脑活动的复杂非线性和非平稳动态,同时保持了可解释性。所提出的方法为推进我们对情绪处理的理解以及开发在医疗保健及其他领域具有广泛应用的更可靠的情绪识别系统提供了巨大潜力。