Suppr超能文献

基于上调的糖酵解相关基因的分化型甲状腺癌预后模型。

A Prognostic Model of Differentiated Thyroid Cancer Based on Up-Regulated Glycolysis-Related Genes.

机构信息

Department of General Surgery, Xiangya Hospital Central South University, Changsha, China.

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.

出版信息

Front Endocrinol (Lausanne). 2022 Apr 22;13:775278. doi: 10.3389/fendo.2022.775278. eCollection 2022.

Abstract

OBJECTIVE

This study aims to identify reliable prognostic biomarkers for differentiated thyroid cancer (DTC) based on glycolysis-related genes (GRGs), and to construct a glycolysis-related gene model for predicting the prognosis of DTC patients.

METHODS

We retrospectively analyzed the transcriptomic profiles and clinical parameters of 838 thyroid cancer patients from 6 public datasets. Single factor Cox proportional risk regression analysis and Least Absolute Shrinkage and Selection Operator (LASSO) were applied to screen genes related to prognosis based on 2528 GRGs. Then, an optimal prognostic model was developed as well as evaluated by Kaplan-Meier and ROC curves. In addition, the underlying molecular mechanisms in different risk subgroups were also explored The Cancer Genome Atlas (TCGA) Pan-Cancer study.

RESULTS

The glycolysis risk score (GRS) outperformed conventional clinicopathological features for recurrence-free survival prediction. The GRS model identified four candidate genes (ADM, MKI67, CD44 and TYMS), and an accurate predictive model of relapse in DTC patients was established that was highly correlated with prognosis (AUC of 0.767). assays revealed that high expression of those genes increased DTC cancer cell viability and invasion. Functional enrichment analysis indicated that these signature GRGs are involved in remodelling the tumour microenvironment, which has been demonstrated in pan-cancers. Finally, we generated an integrated decision tree and nomogram based on the GRS model and clinicopathological features to optimize risk stratification (AUC of the composite model was 0.815).

CONCLUSIONS

The GRG signature-based predictive model may help clinicians provide a prognosis for DTC patients with a high risk of recurrence after surgery and provide further personalized treatment to decrease the chance of relapse.

摘要

目的

本研究旨在基于糖酵解相关基因(GRG)鉴定分化型甲状腺癌(DTC)的可靠预后生物标志物,并构建预测 DTC 患者预后的糖酵解相关基因模型。

方法

我们回顾性分析了来自 6 个公共数据集的 838 例甲状腺癌患者的转录组谱和临床参数。基于 2528 个 GRG,采用单因素 Cox 比例风险回归分析和最小绝对值收缩和选择算子(LASSO)筛选与预后相关的基因。然后,通过 Kaplan-Meier 和 ROC 曲线评估并建立最佳预后模型。此外,还在不同风险亚组中探索了潜在的分子机制,采用 The Cancer Genome Atlas(TCGA)泛癌研究。

结果

糖酵解风险评分(GRS)在预测无复发生存方面优于传统临床病理特征。GRS 模型确定了 4 个候选基因(ADM、MKI67、CD44 和 TYMS),并建立了用于预测 DTC 患者复发的准确预测模型,该模型与预后高度相关(AUC 为 0.767)。体外功能实验表明,这些基因的高表达增加了 DTC 癌细胞的活力和侵袭性。功能富集分析表明,这些特征 GRG 参与了肿瘤微环境的重塑,这在泛癌中得到了证实。最后,我们基于 GRS 模型和临床病理特征生成了一个集成决策树和列线图,以优化风险分层(复合模型的 AUC 为 0.815)。

结论

基于 GRG 特征的预测模型可以帮助临床医生为术后复发风险较高的 DTC 患者提供预后,并提供进一步的个体化治疗以降低复发机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/016e/9072639/8873447fc045/fendo-13-775278-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验