Suppr超能文献

利用深度学习在基层医疗环境中进行糖尿病视网膜病变自动筛查。

Automated diabetic retinopathy screening for primary care settings using deep learning.

作者信息

Bhuiyan Alauddin, Govindaiah Arun, Deobhakta Avnish, Hossain Mohd, Rosen Richard, Smith Theodore

机构信息

iHealthScreen Inc, NY, USA.

New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, NY, USA.

出版信息

Intell Based Med. 2021;5. doi: 10.1016/j.ibmed.2021.100045. Epub 2021 Nov 20.

Abstract

Diabetic Retinopathy (DR) is one of the leading causes of blindness in the United States and other high-income countries. Early detection is key to prevention, which could be achieved effectively with a fully automated screening tool performing well on clinically relevant measures in primary care settings. We have built an artificial intelligence-based tool on a cloud-based platform for large-scale screening of DR as referable or non-referable. In this paper, we aim to validate this tool built using deep learning based techniques. The cloud-based screening model was developed and tested using deep learning techniques with 88702 images from the Kaggle dataset and externally validated using 1748 high-resolution images of the retina (or fundus images) from the Messidor-2 dataset. For validation in the primary care settings, 264 images were taken prospectively from two diabetes clinics in Queens, New York. The images were uploaded to the cloud-based software for testing the automated system as compared to expert ophthalmologists' evaluations of referable DR. Measures used were area under the curve (AUC), sensitivity, and specificity of the screening model with respect to professional graders. The screening system achieved a high sensitivity of 99.21% and a specificity of 97.59% on the Kaggle test dataset with an AUC of 0.9992. The system was also externally validated in Messidor-2, where it achieved a sensitivity of 97.63% and a specificity of 99.49% (AUC, 0.9985). On primary care data, the sensitivity was 92.3% overall (12/13 referable images are correctly identified), and overall specificity was 94.8% (233/251 non-referable images). The proposed DR screening tool achieves state-of-the-art performance among the publicly available datasets: Kaggle and Messidor-2 to the best of our knowledge. The performance on various clinically relevant measures demonstrates that the tool is suitable for screening and early diagnosis of DR in primary care settings.

摘要

糖尿病视网膜病变(DR)是美国和其他高收入国家失明的主要原因之一。早期检测是预防的关键,这可以通过在初级保健环境中对临床相关指标表现良好的全自动筛查工具来有效实现。我们在基于云的平台上构建了一个基于人工智能的工具,用于大规模筛查DR是否可转诊。在本文中,我们旨在验证使用基于深度学习的技术构建的此工具。基于云的筛查模型是使用深度学习技术开发和测试的,使用了来自Kaggle数据集的88702张图像,并使用来自Messidor-2数据集的1748张视网膜高分辨率图像(或眼底图像)进行了外部验证。为了在初级保健环境中进行验证,前瞻性地从纽约皇后区的两家糖尿病诊所获取了264张图像。这些图像被上传到基于云的软件中,以测试自动系统,并与专家眼科医生对可转诊DR的评估进行比较。所使用的测量指标是筛查模型相对于专业分级人员的曲线下面积(AUC)、敏感性和特异性。筛查系统在Kaggle测试数据集上实现了99.21%的高敏感性和97.59%的特异性,AUC为0.9992。该系统也在Messidor-2中进行了外部验证,在那里它实现了97.63%的敏感性和99.49%的特异性(AUC,0.9985)。在初级保健数据上,总体敏感性为92.3%(正确识别了12/13张可转诊图像),总体特异性为94.8%(233/251张不可转诊图像)。据我们所知,所提出的DR筛查工具在公开可用的数据集(Kaggle和Messidor-2)中达到了最先进的性能。在各种临床相关指标上的表现表明,该工具适用于初级保健环境中DR的筛查和早期诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f62a/9071157/6fc60033f518/nihms-1801996-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验