Suppr超能文献

多组学数据在临床肝移植中应用的最新进展与未来方向

Recent Progress and Future Direction for the Application of Multiomics Data in Clinical Liver Transplantation.

作者信息

Liu Zhengtao, Xu Jun, Que Shuping, Geng Lei, Zhou Lin, Mardinoglu Adil, Zheng Shusen

机构信息

Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

J Clin Transl Hepatol. 2022 Apr 28;10(2):363-373. doi: 10.14218/JCTH.2021.00219. Epub 2022 Jan 4.

Abstract

Omics data address key issues in liver transplantation (LT) as the most effective therapeutic means for end-stage liver disease. The purpose of this study was to review the current application and future direction for omics in LT. We reviewed the use of multiomics to elucidate the pathogenesis leading to LT and prognostication. Future directions with respect to the use of omics in LT are also described based on perspectives of surgeons with experience in omics. Significant molecules were identified and summarized based on omics, with a focus on post-transplant liver fibrosis, early allograft dysfunction, tumor recurrence, and graft failure. We emphasized the importance omics for clinicians who perform LTs and prioritized the directions that should be established. We also outlined the ideal workflow for omics in LT. In step with advances in technology, the quality of omics data can be guaranteed using an improved algorithm at a lower price. Concerns should be addressed on the translational value of omics for better therapeutic effects in patients undergoing LT.

摘要

组学数据解决了肝移植(LT)这一终末期肝病最有效治疗手段中的关键问题。本研究旨在综述组学在肝移植中的当前应用及未来方向。我们回顾了多组学在阐明导致肝移植的发病机制及预后方面的应用。还基于有组学经验的外科医生的观点描述了组学在肝移植中的未来方向。基于组学确定并总结了重要分子,重点关注移植后肝纤维化、早期移植物功能障碍、肿瘤复发和移植物衰竭。我们强调了组学对进行肝移植的临床医生的重要性,并确定了应确立的优先方向。我们还概述了肝移植中组学的理想工作流程。随着技术进步,使用改进算法可以以更低成本保证组学数据的质量。应关注组学对接受肝移植患者更好治疗效果的转化价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba0/9039708/3bdcda4e178c/JCTH-10-363-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验