Suppr超能文献

金属掺杂的β-硼烯单层对二氧化碳的高效电催化还原

Efficient electrocatalytic reduction of carbon dioxide by metal-doped β-borophene monolayers.

作者信息

Liu Jin-Hang, Yang Li-Ming, Ganz Eric

机构信息

Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China

School of Physics and Astronomy, University of Minnesota 116 Church St. SE Minneapolis Minnesota 55455 USA.

出版信息

RSC Adv. 2019 Sep 3;9(47):27710-27719. doi: 10.1039/c9ra04135d. eCollection 2019 Aug 29.

Abstract

Electrochemical reduction of CO to value-added chemicals and fuels shows great promise in contributing to reducing the energy crisis and environment problems. This progress has been slowed by a lack of stable, efficient and selective catalysts. In this paper, density functional theory (DFT) was used to study the catalytic performance of the first transition metal series anchored TM-B monolayers as catalysts for electrochemical reduction of CO. The results show that the TM-B monolayer structure has excellent catalytic stability and electrocatalytic selectivity. The primary reduction product of Sc-B is CO and the overpotential is 0.45 V. The primary reduction product of the remaining metals (Ti-Zn) is CH, where Fe-B has the minimum overpotential of 0.45 V. Therefore, these new catalytic materials are exciting. Furthermore, the underlying reaction mechanisms of CO reduction the TM-B monolayers have been revealed. This work will shed insights on both experimental and theoretical studies of electroreduction of CO.

摘要

将CO电化学还原为增值化学品和燃料在缓解能源危机和环境问题方面显示出巨大潜力。然而,由于缺乏稳定、高效和选择性的催化剂,这一进展受到了阻碍。本文采用密度泛函理论(DFT)研究了锚定在TM-B单分子层上的第一过渡金属系列作为CO电化学还原催化剂的催化性能。结果表明,TM-B单分子层结构具有优异的催化稳定性和电催化选择性。Sc-B的主要还原产物是CO,过电位为0.45V。其余金属(Ti-Zn)的主要还原产物是CH,其中Fe-B的过电位最小,为0.45V。因此,这些新型催化材料令人兴奋。此外,还揭示了TM-B单分子层上CO还原的潜在反应机理。这项工作将为CO电还原的实验和理论研究提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aee7/9070772/f1f6486c6d9d/c9ra04135d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验