文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用单原子催化剂和机器学习在能源应用中释放一氧化碳转化潜力。

Unlocking CO conversion potential with single atom catalysts and machine learning in energy application.

作者信息

Kotob Esraa, Awad Mohammed Mosaad, Umar Mustapha, Taialla Omer Ahmed, Hussain Ijaz, Alsabbahen Shaima' Ibrahim, Alhooshani Khalid, Ganiyu Saheed A

机构信息

Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

Department of Chemical Sciences, Faculty of Science and Computing, North-Eastern University, P. M. B. 0198, Gombe, Gombe State, Nigeria.

出版信息

iScience. 2025 Mar 28;28(6):112306. doi: 10.1016/j.isci.2025.112306. eCollection 2025 Jun 20.


DOI:10.1016/j.isci.2025.112306
PMID:40491486
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12148398/
Abstract

SACs are transforming CO conversion and energy applications due to their high catalytic efficiency, unique electronic structures, and maximal atom utilization. They have shown great promise in CO electroreduction, hydrogenation, and dry reforming, yet challenges remain in their synthesis, stability, and scalable production. This review explores advances in SAC design, support interactions, and electronic tuning to enhance catalytic performance. It also analyzed state-of-the-art characterization techniques used to probe SAC structures and reaction mechanisms. Machine learning is emerging as a powerful tool for predicting SAC stability and optimizing reaction pathways. By examining recent breakthroughs and existing limitations, this work provides insights into the future of SACs in energy applications and CO utilization, highlighting their role in sustainable chemical transformations and carbon-neutral technologies.

摘要

单原子催化剂(SACs)因其高催化效率、独特的电子结构和最大的原子利用率,正在改变一氧化碳(CO)转化和能源应用。它们在CO电还原、加氢和干重整方面已展现出巨大潜力,但在其合成、稳定性和可规模化生产方面仍存在挑战。本综述探讨了SAC设计、载体相互作用和电子调谐方面的进展,以提高催化性能。它还分析了用于探测SAC结构和反应机理的先进表征技术。机器学习正成为预测SAC稳定性和优化反应途径的强大工具。通过研究近期的突破和现有局限性,这项工作为SACs在能源应用和CO利用方面的未来发展提供了见解,突出了它们在可持续化学转化和碳中和技术中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/ac4bcecdf110/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/bac6a09f5816/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/1dbf7ed591e9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/c390976400b4/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/f6e97066ac6f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/5d6565030776/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/4fb58331d263/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/d3353220ee06/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/d9eeba757fe0/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/9c2e70bca8b7/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/0101e0af8df5/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/ae6caa503dcd/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/19670cc04fe5/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/8254bd8055c7/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/d6266e2c24e6/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/dd9c4e5f75c7/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/e9f5a416925f/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/31e43d0fe787/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/6ab323d56678/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/dc4d6faf99f5/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/979bec940b4e/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/ac4bcecdf110/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/bac6a09f5816/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/1dbf7ed591e9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/c390976400b4/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/f6e97066ac6f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/5d6565030776/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/4fb58331d263/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/d3353220ee06/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/d9eeba757fe0/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/9c2e70bca8b7/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/0101e0af8df5/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/ae6caa503dcd/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/19670cc04fe5/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/8254bd8055c7/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/d6266e2c24e6/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/dd9c4e5f75c7/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/e9f5a416925f/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/31e43d0fe787/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/6ab323d56678/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/dc4d6faf99f5/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/979bec940b4e/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf42/12148398/ac4bcecdf110/gr20.jpg

相似文献

[1]
Unlocking CO conversion potential with single atom catalysts and machine learning in energy application.

iScience. 2025-3-28

[2]
Single-Atom Catalysis toward Efficient CO Conversion to CO and Formate Products.

Acc Chem Res. 2019-3-19

[3]
Recent Progress of Studies on Photoconversion and Photothermal Conversion of CO with Single-Atom Catalysts.

Chem Bio Eng. 2024-4-8

[4]
Transition Metal-Nitrogen-Carbon Single-Atom Catalysts Enhanced CO Electroreduction Reaction: A Review.

ChemSusChem. 2025-2-1

[5]
Contemporary advances in photocatalytic CO reduction using single-atom catalysts supported on carbon-based materials.

Adv Colloid Interface Sci. 2024-1

[6]
Design Principles of Single-Atom Catalysts for Electrocatalytic CO Reduction to High-Value Hydrocarbons.

Chem Asian J. 2025-6-6

[7]
Electrocatalytic Innovations at Atomic Scale: From Single-Atom to Periodic Ensembles for Sustainable Energy Conversion.

Nanomaterials (Basel). 2025-4-21

[8]
Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis.

Acc Chem Res. 2023-9-5

[9]
Sustainable methanol production from carbon dioxide: advances, challenges, and future prospects.

Environ Sci Pollut Res Int. 2024-7

[10]
Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion.

ACS Mater Au. 2021-10-25

本文引用的文献

[1]
Fluorine Doping-Assisted Reconstruction of Isolated Cu Sites for CO Electroreduction Toward Multicarbon Products.

Adv Mater. 2025-3

[2]
Copper-Catalysed Electrochemical CO Methanation via the Alloying of Single Cobalt Atoms.

Angew Chem Int Ed Engl. 2025-2-17

[3]
Rapid prediction of molecular crystal structures using simple topological and physical descriptors.

Nat Commun. 2024-11-11

[4]
Progress and challenges in structural, and characterization of single-atom catalysts by X-ray based synchrotron radiation techniques.

Chem Soc Rev. 2024-12-9

[5]
P-Block Aluminum Single-Atom Catalyst for Electrocatalytic CO Reduction with High Intrinsic Activity.

J Am Chem Soc. 2024-10-23

[6]
Regulating Atomically-Precise Pt Sites for Boosting Light-Driven Dry Reforming of Methane.

Angew Chem Int Ed Engl. 2024-11-11

[7]
Not One, Not Two, But at Least Three: Activity Origin of Copper Single-Atom Catalysts toward CO/CO Electroreduction to C Products.

J Am Chem Soc. 2024-6-5

[8]
Recent Advances in Carbon-Based Single-Atom Catalysts for Electrochemical Oxygen Reduction to Hydrogen Peroxide in Acidic Media.

Nanomaterials (Basel). 2024-5-9

[9]
Bimetallic Metal Sites in Metal-Organic Frameworks Facilitate the Production of 1-Butene from Electrosynthesized Ethylene.

J Am Chem Soc. 2024-5-22

[10]
Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO catalyst.

Nat Commun. 2024-5-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索