Suppr超能文献

迈向体内神经解码。

Towards in vivo neural decoding.

作者信息

Valencia Daniel, Alimohammad Amir

机构信息

Department of Electrical and Computer Engineering, San Diego State University, San Diego, USA.

出版信息

Biomed Eng Lett. 2022 Feb 10;12(2):185-195. doi: 10.1007/s13534-022-00217-z. eCollection 2022 May.

Abstract

Conventional spike sorting and motor intention decoding algorithms are mostly implemented on an external computing device, such as a personal computer. The innovation of high-resolution and high-density electrodes to record the brain's activity at the single neuron level may eliminate the need for spike sorting altogether while potentially enabling in vivo neural decoding. This article explores the feasibility and efficient realization of in vivo decoding, with and without spike sorting. The efficiency of neural network-based models for reliable motor decoding is presented and the performance of candidate neural decoding schemes on sorted single-unit activity and unsorted multi-unit activity are evaluated. A programmable processor with a custom instruction set architecture, for the first time to the best of our knowledge, is designed and implemented for executing neural network operations in a standard 180-nm CMOS process. The processor's layout is estimated to occupy 49 mm of silicon area and to dissipate 12 mW of power from a 1.8 V supply, which is within the tissue-safe operation of the brain.

摘要

传统的尖峰排序和运动意图解码算法大多在外部计算设备(如个人计算机)上实现。用于在单神经元水平记录大脑活动的高分辨率和高密度电极的创新可能完全消除对尖峰排序的需求,同时有可能实现体内神经解码。本文探讨了有无尖峰排序情况下体内解码的可行性和高效实现方式。展示了基于神经网络的模型用于可靠运动解码的效率,并评估了候选神经解码方案对已排序单单元活动和未排序多单元活动的性能。据我们所知,首次设计并实现了一种具有定制指令集架构的可编程处理器,用于在标准180纳米CMOS工艺中执行神经网络操作。该处理器的版图估计占据49平方毫米的硅面积,从1.8伏电源消耗12毫瓦的功率,这在大脑组织安全操作范围内。

相似文献

1
Towards in vivo neural decoding.迈向体内神经解码。
Biomed Eng Lett. 2022 Feb 10;12(2):185-195. doi: 10.1007/s13534-022-00217-z. eCollection 2022 May.
2
Partially binarized neural networks for efficient spike sorting.用于高效尖峰分类的部分二值化神经网络。
Biomed Eng Lett. 2022 Dec 9;13(1):73-83. doi: 10.1007/s13534-022-00255-7. eCollection 2023 Feb.
3
Neural Spike Sorting Using Binarized Neural Networks.基于二值神经网络的神经尖峰分类。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:206-214. doi: 10.1109/TNSRE.2020.3043403. Epub 2021 Mar 1.
6
An Efficient Hardware Architecture for Template Matching-Based Spike Sorting.基于模板匹配的 Spike 排序的高效硬件架构。
IEEE Trans Biomed Circuits Syst. 2019 Jun;13(3):481-492. doi: 10.1109/TBCAS.2019.2907882. Epub 2019 Mar 27.
9
Sums of Spike Waveform Features for Motor Decoding.用于运动解码的尖峰波形特征总和
Front Neurosci. 2017 Jul 18;11:406. doi: 10.3389/fnins.2017.00406. eCollection 2017.

本文引用的文献

2
Frameworks for Efficient Brain-Computer Interfacing.高效脑机接口的框架。
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1714-1722. doi: 10.1109/TBCAS.2019.2947130. Epub 2019 Oct 14.
3
Continuous learning in single-incremental-task scenarios.单增量任务场景中的持续学习。
Neural Netw. 2019 Aug;116:56-73. doi: 10.1016/j.neunet.2019.03.010. Epub 2019 Apr 5.
6
High-performance neuroprosthetic control by an individual with tetraplegia.高位截瘫患者的高性能神经假体控制。
Lancet. 2013 Feb 16;381(9866):557-64. doi: 10.1016/S0140-6736(12)61816-9. Epub 2012 Dec 17.
9
Control of a brain-computer interface without spike sorting.无需尖峰分类的脑机接口控制
J Neural Eng. 2009 Oct;6(5):055004. doi: 10.1088/1741-2560/6/5/055004. Epub 2009 Sep 1.
10
Cortical control of a prosthetic arm for self-feeding.用于自主进食的假肢手臂的皮质控制。
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验