Suppr超能文献

用于高效尖峰分类的部分二值化神经网络。

Partially binarized neural networks for efficient spike sorting.

作者信息

Valencia Daniel, Alimohammad Amir

机构信息

Department of Electrical and Computer Engineering, San Diego State University, San Diego, USA.

Department of Electrical and Computer Engineering, University of California, La Jolla, USA.

出版信息

Biomed Eng Lett. 2022 Dec 9;13(1):73-83. doi: 10.1007/s13534-022-00255-7. eCollection 2023 Feb.

Abstract

While brain-implantable neural spike sorting can be realized using efficient algorithms, the presence of noise may make it difficult to maintain high-peformance sorting using conventional techniques. In this article, we explore the use of partially binarized neural networks (PBNNs), to the best of our knowledge for the first time, for sorting of neural spike feature vectors. It is shown that compared to the waveform template-based methods, PBNNs offer robust spike sorting over various datasets and noise levels. The ASIC implementation of the PBNN-based spike sorting system in a standard 180-nm CMOS process is presented. The post place and route simulations results show that the synthesized PBNN consumes only 0.59 W of power from a 1.8 V supply while operating at 24 kHz and occupies 0.15 mm of silicon area. It is shown that the designed PBNN-based spike sorting system not only offers comparable accuracy to the state-of-the-art spike sorting systems over various noise levels and datasets, it also occupies a smaller silicon area and consumes less power and energy. This makes PBNNs a viable alternative towards the implementation of brain-implantable spike sorting systems.

摘要

虽然使用高效算法可以实现可植入大脑的神经尖峰分类,但噪声的存在可能使得使用传统技术难以维持高性能分类。在本文中,据我们所知,我们首次探索使用部分二值化神经网络(PBNN)来对神经尖峰特征向量进行分类。结果表明,与基于波形模板的方法相比,PBNN在各种数据集和噪声水平下都能提供稳健的尖峰分类。本文介绍了基于PBNN的尖峰分类系统在标准180纳米CMOS工艺中的ASIC实现。布局布线后的仿真结果表明,合成的PBNN在24千赫兹运行时,从1.8伏电源获取的功耗仅为0.59瓦,占用的硅面积为0.15平方毫米。结果表明,所设计的基于PBNN的尖峰分类系统不仅在各种噪声水平和数据集上具有与现有最先进尖峰分类系统相当的精度,而且占用的硅面积更小,功耗和能量更低。这使得PBNN成为实现可植入大脑的尖峰分类系统的可行替代方案。

相似文献

1
Partially binarized neural networks for efficient spike sorting.用于高效尖峰分类的部分二值化神经网络。
Biomed Eng Lett. 2022 Dec 9;13(1):73-83. doi: 10.1007/s13534-022-00255-7. eCollection 2023 Feb.
2
Neural Spike Sorting Using Binarized Neural Networks.基于二值神经网络的神经尖峰分类。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:206-214. doi: 10.1109/TNSRE.2020.3043403. Epub 2021 Mar 1.
3
An Efficient Hardware Architecture for Template Matching-Based Spike Sorting.基于模板匹配的 Spike 排序的高效硬件架构。
IEEE Trans Biomed Circuits Syst. 2019 Jun;13(3):481-492. doi: 10.1109/TBCAS.2019.2907882. Epub 2019 Mar 27.
4
An Efficient Brain-Switch for Asynchronous Brain-Computer Interfaces.
IEEE Trans Biomed Circuits Syst. 2025 Feb;19(1):130-141. doi: 10.1109/TBCAS.2024.3396115. Epub 2025 Feb 11.
9
Towards in vivo neural decoding.迈向体内神经解码。
Biomed Eng Lett. 2022 Feb 10;12(2):185-195. doi: 10.1007/s13534-022-00217-z. eCollection 2022 May.

本文引用的文献

2
High-performance brain-to-text communication via handwriting.通过手写实现高性能的脑-文本通信。
Nature. 2021 May;593(7858):249-254. doi: 10.1038/s41586-021-03506-2. Epub 2021 May 12.
3
Neural Spike Sorting Using Binarized Neural Networks.基于二值神经网络的神经尖峰分类。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:206-214. doi: 10.1109/TNSRE.2020.3043403. Epub 2021 Mar 1.
4
Machine Learning for Neural Decoding.机器学习在神经解码中的应用。
eNeuro. 2020 Aug 31;7(4). doi: 10.1523/ENEURO.0506-19.2020. Print 2020 Jul/Aug.
6
Toward a Speech Neuroprosthesis.迈向言语神经假体。
JAMA. 2020 Feb 4;323(5):413-414. doi: 10.1001/jama.2019.19813.
7
A Real-Time Spike Sorting System Using Parallel OSort Clustering.使用并行 OSort 聚类的实时尖峰分类系统。
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1700-1713. doi: 10.1109/TBCAS.2019.2947618. Epub 2019 Oct 15.
8
Frameworks for Efficient Brain-Computer Interfacing.高效脑机接口的框架。
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1714-1722. doi: 10.1109/TBCAS.2019.2947130. Epub 2019 Oct 14.
9
An Efficient Hardware Architecture for Template Matching-Based Spike Sorting.基于模板匹配的 Spike 排序的高效硬件架构。
IEEE Trans Biomed Circuits Syst. 2019 Jun;13(3):481-492. doi: 10.1109/TBCAS.2019.2907882. Epub 2019 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验