Snyder Chad R, DeLongchamp Dean M
Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
Curr Opin Solid State Mater Sci. 2018 Apr;22(2). doi: 10.1016/j.cossms.2018.03.001.
Organic semiconductors may be processed from fluids using graphical arts printing and patterning techniques to create complex circuitry. Because organic semiconductors are weak van der Waals solids, the creation of glassy phases during processing is quite common. Because structural disorder leads to electronic disorder, it is necessary to understand these phases to optimize and control the electronic properties of these materials. Here we review the significance of glassy phases in organic semiconductors. We examine challenges in the measurement of the glass transition temperature and the accurate classification of phases in these relatively rigid materials. Device implications of glassy phases are discussed. Processing schemes that are grounded in the principles of glass physics and sound glass transition temperature measurement will more quickly achieve desired structure and electronic characteristics, accelerating the exciting progress of organic semiconductor technology development.
有机半导体可以使用平版印刷和图案化技术从流体中进行加工,以创建复杂的电路。由于有机半导体是弱范德华固体,因此在加工过程中形成玻璃相是很常见的。由于结构无序会导致电子无序,因此有必要了解这些相,以优化和控制这些材料的电子特性。在此,我们综述玻璃相在有机半导体中的重要性。我们研究了测量玻璃化转变温度以及在这些相对刚性的材料中准确分类相的挑战。还讨论了玻璃相在器件方面的影响。基于玻璃物理学原理和可靠的玻璃化转变温度测量的加工方案将更快地实现所需的结构和电子特性,加速有机半导体技术发展的激动人心的进展。