Suppr超能文献

环核苷酸门控离子通道的敲低会损害成年动物的运动活性及缺氧后的恢复。

Knockdown of a Cyclic Nucleotide-Gated Ion Channel Impairs Locomotor Activity and Recovery From Hypoxia in Adult .

作者信息

Qiu Shuang, Xiao Chengfeng, Robertson R Meldrum

机构信息

Department of Biology, Queen's University, Kingston, ON, Canada.

出版信息

Front Physiol. 2022 Apr 4;13:852919. doi: 10.3389/fphys.2022.852919. eCollection 2022.

Abstract

Cyclic guanosine monophosphate (cGMP) modulates the speed of recovery from anoxia in adult and mediates hypoxia-related behaviors in larvae. Cyclic nucleotide-gated channels (CNG) and cGMP-activated protein kinase (PKG) are two cGMP downstream targets. PKG is involved in behavioral tolerance to hypoxia and anoxia in adults, however little is known about a role for CNG channels. We used a CNGL (CNG-like) mutant with reduced transcripts to investigate the contribution of CNGL to the hypoxia response. CNGL mutants had reduced locomotor activity under normoxia. A shorter distance travelled in a standard locomotor assay was due to a slower walking speed and more frequent stops. In control flies, hypoxia immediately reduced path length per minute. Flies took 30-40 min in normoxia for >90% recovery of path length per minute from 15 min hypoxia. CNGL mutants had impaired recovery from hypoxia; 40 min for ∼10% recovery of walking speed. The effects of CNGL mutation on locomotor activity and recovery from hypoxia were recapitulated by pan-neuronal knockdown. Genetic manipulation to increase cGMP in the CNGL mutants increased locomotor activity under normoxia and eliminated the impairment of recovery from hypoxia. We conclude that CNGL channels and cGMP signaling are involved in the control of locomotor activity and the hypoxic response of adult .

摘要

环磷酸鸟苷(cGMP)调节成虫缺氧后的恢复速度,并介导幼虫的缺氧相关行为。环核苷酸门控通道(CNG)和cGMP激活的蛋白激酶(PKG)是cGMP的两个下游靶点。PKG参与成虫对缺氧和无氧的行为耐受性,然而,关于CNG通道的作用知之甚少。我们使用了一种转录本减少的CNGL(类CNG)突变体来研究CNGL对缺氧反应的贡献。CNGL突变体在常氧条件下的运动活性降低。在标准运动试验中移动距离较短是由于行走速度较慢和停顿更频繁。在对照果蝇中,缺氧会立即减少每分钟的路径长度。果蝇在常氧条件下需要30 - 40分钟才能从15分钟的缺氧状态中恢复每分钟路径长度的90%以上。CNGL突变体从缺氧中恢复受损;恢复行走速度的10%需要40分钟。通过全神经元敲低可重现CNGL突变对运动活性和缺氧恢复的影响。通过基因操作增加CNGL突变体中的cGMP可增加常氧条件下的运动活性,并消除缺氧恢复的损伤。我们得出结论,CNGL通道和cGMP信号传导参与成虫运动活性的控制和缺氧反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3ec/9075734/1e2efc791713/fphys-13-852919-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验