Department of Biology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
J Neurophysiol. 2020 Mar 1;123(3):885-895. doi: 10.1152/jn.00724.2019. Epub 2020 Feb 5.
Neural function depends on maintaining cellular membrane potentials as the basis for electrical signaling. Yet, in mammals and insects, neuronal and glial membrane potentials can reversibly depolarize to zero, shutting down neural function by the process of spreading depolarization (SD) that collapses the ion gradients across membranes. SD is not evident in all metazoan taxa with centralized nervous systems. We consider the occurrence and similarities of SD in different animals and suggest that it is an emergent property of nervous systems that have evolved to control complex behaviors requiring energetically expensive, rapid information processing in a tightly regulated extracellular environment. Whether SD is beneficial or not in mammals remains an open question. However, in insects, it is associated with the response to harsh environments and may provide an energetic advantage that improves the chances of survival. The remarkable similarity of SD in diverse taxa supports a model systems approach to understanding the mechanistic underpinning of human neuropathology associated with migraine, stroke, and traumatic brain injury.
神经功能依赖于维持细胞膜电位,作为电信号的基础。然而,在哺乳动物和昆虫中,神经元和神经胶质细胞膜电位可以可逆地去极化至零,通过扩散性去极化(SD)过程使膜离子梯度崩溃,从而关闭神经功能。SD 在具有集中神经系统的所有后生动物类群中并不明显。我们考虑了 SD 在不同动物中的发生和相似性,并提出它是神经系统的一个涌现特性,神经系统已经进化到控制需要在严格调节的细胞外环境中进行能量消耗大、快速信息处理的复杂行为。SD 是否对哺乳动物有益仍然是一个悬而未决的问题。然而,在昆虫中,它与对恶劣环境的反应有关,可能提供一种能量优势,提高生存机会。SD 在不同类群中的惊人相似性支持了一种模型系统方法,以了解与偏头痛、中风和创伤性脑损伤相关的人类神经病理学的机制基础。