Gupta Sarthak, Patteson Alison E, Schwarz J M
Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY USA.
Indian Creek Farm, Ithaca, NY USA.
New J Phys. 2021 Sep;23. doi: 10.1088/1367-2630/ac2550. Epub 2021 Sep 29.
The ability of cells to move through small spaces depends on the mechanical properties of the cellular cytoskeleton and on nuclear deformability. In mammalian cells, the cytoskeleton is composed of three interacting, semi-flexible polymer networks: actin, microtubules, and intermediate filaments (IF). Recent experiments of mouse embryonic fibroblasts with and without vimentin have shown that the IF vimentin plays a role in confined cell motility. Here, we develop a minimal model of a cell moving through a microchannel that incorporates explicit effects of actin and vimentin and implicit effects of microtubules. Specifically, the model consists of a cell with an actomyosin cortex and a deformable cell nucleus and mechanical linkages between the two. By decreasing the amount of vimentin, we find that the cell speed increases for vimentin-null cells compared to cells with vimentin. The loss of vimentin increases nuclear deformation and alters nuclear positioning in the cell. Assuming nuclear positioning is a read-out for cell polarity, we propose a new polarity mechanism which couples cell directional motion with cytoskeletal strength and nuclear positioning and captures the abnormally persistent motion of vimentin-null cells, as observed in experiments. The enhanced persistence indicates that the vimentin-null cells are more controlled by the confinement and so less autonomous, relying more heavily on external cues than their wild-type counterparts. Our modeling results present a quantitative interpretation for recent experiments and have implications for understanding the role of vimentin in the epithelial-mesenchymal transition.
细胞在狭小空间中移动的能力取决于细胞骨架的力学特性和细胞核的可变形性。在哺乳动物细胞中,细胞骨架由三种相互作用的半柔性聚合物网络组成:肌动蛋白、微管和中间丝(IF)。最近对有波形蛋白和无波形蛋白的小鼠胚胎成纤维细胞进行的实验表明,波形蛋白在受限细胞运动中发挥作用。在此,我们构建了一个细胞在微通道中移动的简化模型,该模型纳入了肌动蛋白和波形蛋白的明确作用以及微管的隐含作用。具体而言,该模型由一个具有肌动球蛋白皮层的细胞、一个可变形的细胞核以及两者之间的机械连接组成。通过减少波形蛋白的量,我们发现与有波形蛋白的细胞相比,波形蛋白缺失的细胞速度增加。波形蛋白的缺失增加了细胞核的变形并改变了细胞核在细胞中的定位。假设细胞核定位是细胞极性的一种表现,我们提出了一种新的极性机制,该机制将细胞的定向运动与细胞骨架强度和细胞核定位联系起来,并捕捉到波形蛋白缺失细胞异常持续的运动,正如实验中所观察到的那样。这种增强的持续性表明,波形蛋白缺失的细胞受限制的影响更大,因此自主性更低,比野生型细胞更依赖外部线索。我们的建模结果为最近的实验提供了定量解释,并对理解波形蛋白在上皮 - 间质转化中的作用具有启示意义。