Wang Wei, Law Robert A, Ipiña Emiliano Perez, Konstantopoulos Konstantinos, Camley Brian A
Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
PRX Life. 2025;3(1). doi: 10.1103/prxlife.3.013012. Epub 2025 Feb 25.
When cells in a primary tumor work together to invade into nearby tissue, this can lead to cell dissociations-cancer cells breaking off from the invading front-leading to metastasis. What controls the dissociation of cells and whether they break off singly or in small groups? Can this be determined by cell-cell adhesion or chemotactic cues given to cells? We develop a physical model for this question, based on experiments that mimic aspects of cancer cell invasion using microfluidic devices with microchannels of different widths. Experimentally, most dissociation events ("ruptures") involve single cells breaking off, but we observe some ruptures of large groups (~20 cells) in wider channels. The rupture probability is nearly independent of channel width. We recapitulate the experimental results with a phase-field cell motility model by introducing three different cell states (follower, guided, and high-motility "leader" cells) based on their spatial position. These leader cells may explain why single-cell rupture is the universal most probable outcome. Our simulation results show that cell-channel adhesion is necessary for cells in narrow channels to invade, and strong cell-cell adhesion leads to fewer but larger ruptures. Chemotaxis also influences the rupture behavior: Strong chemotaxis strength leads to larger and faster ruptures. Finally, we study the relationship between biological jamming transitions and cell dissociations. Our results suggest unjamming is necessary but not sufficient to create ruptures.
当原发性肿瘤中的细胞共同作用侵入附近组织时,这可能导致细胞解离——癌细胞从侵袭前沿脱离——从而导致转移。是什么控制着细胞的解离,以及它们是单个脱离还是成小群体脱离?这能否由细胞间粘附或给予细胞的趋化线索来决定?我们基于使用具有不同宽度微通道的微流控装置模拟癌细胞侵袭的实验,为这个问题建立了一个物理模型。在实验中,大多数解离事件(“破裂”)涉及单个细胞脱离,但我们在较宽的通道中观察到一些大群体(约20个细胞)的破裂。破裂概率几乎与通道宽度无关。我们通过基于细胞的空间位置引入三种不同的细胞状态(跟随细胞、导向细胞和高迁移率的“领头”细胞),用相场细胞运动模型再现了实验结果。这些领头细胞可能解释了为什么单细胞破裂是最普遍的可能结果。我们的模拟结果表明,细胞与通道的粘附对于窄通道中的细胞侵袭是必要的,而强细胞间粘附会导致更少但更大的破裂。趋化性也会影响破裂行为:强趋化强度会导致更大、更快的破裂。最后,我们研究了生物阻塞转变与细胞解离之间的关系。我们的结果表明,解除阻塞对于产生破裂是必要的,但不是充分的。