Suppr超能文献

根据校准到二维马达-离合器模型的参数预测受限一维细胞迁移。

Predicting Confined 1D Cell Migration from Parameters Calibrated to a 2D Motor-Clutch Model.

作者信息

Prahl Louis S, Stanslaski Maria R, Vargas Pablo, Piel Matthieu, Odde David J

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.

Institut Curie, PSL Research University, CNRS UMR 144 and Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France; INSERM U932 Immunité et Cancer, Institut Curie, PSL Research University, Paris, France.

出版信息

Biophys J. 2020 Apr 7;118(7):1709-1720. doi: 10.1016/j.bpj.2020.01.048. Epub 2020 Feb 25.

Abstract

Biological tissues contain micrometer-scale gaps and pores, including those found within extracellular matrix fiber networks, between tightly packed cells, and between blood vessels or nerve bundles and their associated basement membranes. These spaces restrict cell motion to a single-spatial dimension (1D), a feature that is not captured in traditional in vitro cell migration assays performed on flat, unconfined two-dimensional (2D) substrates. Mechanical confinement can variably influence cell migration behaviors, and it is presently unclear whether the mechanisms used for migration in 2D unconfined environments are relevant in 1D confined environments. Here, we assessed whether a cell migration simulator and associated parameters previously measured for cells on 2D unconfined compliant hydrogels could predict 1D confined cell migration in microfluidic channels. We manufactured microfluidic devices with narrow channels (60-μm rectangular cross-sectional area) and tracked human glioma cells that spontaneously migrated within channels. Cell velocities (v = 0.51 ± 0.02 μm min) were comparable to brain tumor expansion rates measured in the clinic. Using motor-clutch model parameters estimated from cells on unconfined 2D planar hydrogel substrates, simulations predicted similar migration velocities (v = 0.37 ± 0.04 μm min) and also predicted the effects of drugs targeting the motor-clutch system or cytoskeletal assembly. These results are consistent with glioma cells utilizing a motor-clutch system to migrate in confined environments.

摘要

生物组织包含微米级的间隙和孔隙,包括细胞外基质纤维网络内、紧密堆积的细胞之间以及血管或神经束与其相关基底膜之间的间隙和孔隙。这些空间将细胞运动限制在单一空间维度(1D),而这一特征在传统的在平坦、无限制的二维(2D)基质上进行的体外细胞迁移试验中并未体现。机械限制会以不同方式影响细胞迁移行为,目前尚不清楚在二维无限制环境中用于迁移的机制在一维限制环境中是否相关。在此,我们评估了一个细胞迁移模拟器以及先前针对二维无限制顺应性水凝胶上的细胞测量的相关参数,是否能够预测微流控通道中一维限制的细胞迁移。我们制造了具有狭窄通道(60-μm矩形横截面积)的微流控装置,并追踪在通道内自发迁移的人类胶质瘤细胞。细胞速度(v = 0.51 ± 0.02 μm/分钟)与临床测量的脑肿瘤扩展速率相当。使用从无限制二维平面水凝胶基质上的细胞估计的马达-离合器模型参数,模拟预测了相似的迁移速度(v = 0.37 ± 0.04 μm/分钟),并且还预测了靶向马达-离合器系统或细胞骨架组装的药物的作用。这些结果与胶质瘤细胞利用马达-离合器系统在限制环境中迁移一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6068/7136340/7840fdac8a6c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验