Suppr超能文献

作为自修复容器的碳酸钙微胶囊的合成。

Synthesis of calcium carbonate microcapsules as self-healing containers.

作者信息

Hettiarachchi Nadeesha Maduwanthi, De Silva Rangika Thilan, Gayanath Mantilaka M M M G Prasanga, Pasbakhsh Pooria, De Silva K M Nalin, Amaratunga Gehan A J

机构信息

Academy of Sri Lanka Institute of Nanotechnology (SLINTEC Academy) Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama 10200 Sri Lanka

Sri Lanka Institute of Nanotechnology (SLINTEC) Nanotechnology and Science Park, Mahenwatte, Pitipana, Homagama 10200 Sri Lanka.

出版信息

RSC Adv. 2019 Jul 30;9(41):23666-23677. doi: 10.1039/c9ra03804c. eCollection 2019 Jul 29.

Abstract

Contemporary studies of self-healing polymer composites are based on microcapsules synthesized using synthetic and toxic polymers, biopolymers, methods such as polymerization, electrospraying, and air atomization. Herein, we synthesized a healing agent, epoxy (EPX) encapsulated calcium carbonate (CC) microcapsules, which was used to prepare self-healing EPX composites as a protective coating for metals. The CC microcapsules were synthesized using two facile methods, namely, the soft-template method (STM) and the emulsion method (EM). Microcapsules prepared using the STM (ST-CC) were synthesized using sodium dodecyl sulphate (SDS) surfactant micelles as the soft-template, while the microcapsules prepared using the EM (EM-CC) were synthesized in an oil-in-water (O/W) emulsion. These prepared CC microcapsules were characterized using light microscopy (LMC), field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thermogravimetric analysis (TGA). The synthesized ST-CC microcapsules were spherical in shape, with an average diameter of 2.5 μm and an average shell wall thickness of 650 nm, while EM-CC microcapsules had a near-spherical shape with an average diameter of 3.4 μm and an average shell wall thickness of 880 nm. The ST-CC capsules exhibited flake-like rough surfaces while EM-CC capsules showed smooth bulgy surfaces. The loading capacity of ST-CC and EM-CC microcapsules were estimated using TGA and found to be 11% and 36%, respectively. The FTIR and NMR spectra confirmed the EPX encapsulation and the unreactive nature of the loaded EPX with the inner walls of CC microcapsules. The synthesized CC microcapsules were further incorporated into an EPX matrix to prepare composite coatings with 10 (w/w%), 20 (w/w%), and 50 (w/w%) capsule loadings. The prepared EPX composite coatings were scratched and observed using FE-SEM and LMC to evaluate the release of encapsulated EPX inside the CC capsules, which is analogous to the healing behaviour. Moreover, EPX composite coatings with 20 (w/w%) and 50 (w/w%) of ST-CC showed better healing performances. Thus, it was observed that ST-CC microcapsules outperformed EM-CC. Additionally, the EPX/CC coatings showed remarkable self-healing properties by closing the gaps of the scratch surfaces. Thus, these formaldehyde-free, biocompatible, biodegradable, and non-toxic CC based EPX composite coatings hold great potential to be used as a protective coating for metal substrates. Primary results detected significant corrosion retardancy due to the self-healing coatings under an accelerated corrosion process, which was performed with a salt spray test.

摘要

当代对自修复聚合物复合材料的研究基于使用合成和有毒聚合物、生物聚合物以及诸如聚合、电喷雾和气雾化等方法合成的微胶囊。在此,我们合成了一种愈合剂,即环氧(EPX)包裹的碳酸钙(CC)微胶囊,用于制备自修复EPX复合材料作为金属的保护涂层。CC微胶囊通过两种简便方法合成,即软模板法(STM)和乳液法(EM)。使用STM制备的微胶囊(ST-CC)以十二烷基硫酸钠(SDS)表面活性剂胶束作为软模板合成,而使用EM制备的微胶囊(EM-CC)在水包油(O/W)乳液中合成。这些制备的CC微胶囊通过光学显微镜(LMC)、场发射扫描电子显微镜(FE-SEM)、傅里叶变换红外光谱(FTIR)、核磁共振光谱(NMR)和热重分析(TGA)进行表征。合成的ST-CC微胶囊呈球形,平均直径为2.5μm,平均壳壁厚度为650nm,而EM-CC微胶囊呈近球形,平均直径为3.4μm,平均壳壁厚度为880nm。ST-CC胶囊呈现出片状粗糙表面,而EM-CC胶囊显示出光滑凸起表面。使用TGA估计ST-CC和EM-CC微胶囊的负载量,分别为11%和36%。FTIR和NMR光谱证实了EPX的包裹以及负载的EPX与CC微胶囊内壁的非反应性质。将合成的CC微胶囊进一步掺入EPX基体中,以制备具有10(w/w%)、20(w/w%)和50(w/w%)胶囊负载量的复合涂层。对制备的EPX复合涂层进行划痕处理,并使用FE-SEM和LMC观察,以评估CC胶囊内包裹的EPX的释放情况,这类似于愈合行为。此外,含有20(w/w%)和50(w/w%)ST-CC的EPX复合涂层表现出更好的愈合性能。因此,观察到ST-CC微胶囊优于EM-CC。此外,EPX/CC涂层通过封闭划痕表面的间隙显示出显著的自修复性能。因此,这些无甲醛、生物相容、可生物降解且无毒的基于CC的EPX复合涂层具有作为金属基材保护涂层的巨大潜力。在加速腐蚀过程(通过盐雾试验进行)中,初步结果检测到由于自修复涂层而具有显著的缓蚀性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21e6/9069483/a99097a1670e/c9ra03804c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验