Suppr超能文献

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)与中和抗体结合预测的计算方法。

Computational approach for binding prediction of SARS-CoV-2 with neutralizing antibodies.

作者信息

Beshnova Daria, Fang Yan, Du Mingjian, Sun Yehui, Du Fenghe, Ye Jianfeng, Chen Zhijian James, Li Bo

机构信息

Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.

Department of Molecular Biology, USA.

出版信息

Comput Struct Biotechnol J. 2022;20:2212-2222. doi: 10.1016/j.csbj.2022.04.038. Epub 2022 May 2.

Abstract

Coronavirus disease 2019 (COVID-19) caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide as a severe pandemic and caused enormous global health and economical damage. Since December 2019, more than 197 million cases have been reported, causing 4.2 million deaths. In the settings of pandemic it is an urgent necessity for the development of an effective COVID-19 treatment. While screening of hundreds of antibodies isolated from convalescent patients is challenging due to its high cost, use of computational methods may provide an attractive solution in selecting the top candidates. Here, we developed a computational approach (SARS-AB) for binding prediction of spike protein SARS-CoV-2 with monoclonal antibodies. We validated our approach using existing structures in the protein data bank (PDB), and demonstrated its prediction power in antibody-spike protein binding prediction. We further tested its performance using antibody sequences from the literature where crystal structure is not available, and observed a high prediction accuracy (AUC = 99.6%). Finally, we demonstrated that SARS-AB can be used to design effective antibodies against novel SARS-CoV-2 mutants that might escape the current antibody protections. We believe that SARS-AB can significantly accelerate the discovery of neutralizing antibodies against SARS-CoV-2 and its mutants.

摘要

由新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的2019冠状病毒病(COVID-19)已作为严重的大流行病在全球范围内传播,并造成了巨大的全球健康和经济损害。自2019年12月以来,已报告超过1.97亿例病例,导致420万人死亡。在大流行背景下,开发有效的COVID-19治疗方法迫在眉睫。虽然从康复患者中筛选数百种分离出的抗体成本高昂,具有挑战性,但使用计算方法可能为选择最佳候选抗体提供有吸引力的解决方案。在这里,我们开发了一种计算方法(SARS-AB)用于预测SARS-CoV-2刺突蛋白与单克隆抗体的结合。我们使用蛋白质数据库(PDB)中的现有结构验证了我们的方法,并证明了其在抗体-刺突蛋白结合预测中的预测能力。我们进一步使用文献中没有晶体结构的抗体序列测试了其性能,观察到较高的预测准确性(AUC = 99.6%)。最后,我们证明SARS-AB可用于设计针对可能逃避当前抗体保护的新型SARS-CoV-

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e713/9118521/835dedd965bf/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验