Suppr超能文献

利用海啸和大地测量观测数据的卷积神经网络进行海啸淹没的早期预测。

Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks.

机构信息

Fujitsu Laboratories Ltd., Kawasaki, Japan.

Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

出版信息

Nat Commun. 2021 Apr 15;12(1):2253. doi: 10.1038/s41467-021-22348-0.

Abstract

Rapid and accurate hazard forecasting is important for prompt evacuations and reducing casualties during natural disasters. In the decade since the 2011 Tohoku tsunami, various tsunami forecasting methods using real-time data have been proposed. However, rapid and accurate tsunami inundation forecasting in coastal areas remains challenging. Here, we propose a tsunami forecasting approach using convolutional neural networks (CNNs) for early warning. Numerical tsunami forecasting experiments for Tohoku demonstrated excellent performance with average maximum tsunami amplitude and tsunami arrival time forecasting errors of ~0.4 m and ~48 s, respectively, for 1,000 unknown synthetic tsunami scenarios. Our forecasting approach required only 0.004 s on average using a single CPU node. Moreover, the CNN trained on only synthetic tsunami scenarios provided reasonable inundation forecasts using actual observation data from the 2011 event, even with noisy inputs. These results verify the feasibility of AI-enabled tsunami forecasting for providing rapid and accurate early warnings.

摘要

快速准确的灾害预测对于自然灾害发生时的迅速疏散和减少人员伤亡至关重要。自 2011 年东北海啸以来的十年间,已经提出了各种使用实时数据的海啸预测方法。然而,在沿海地区进行快速准确的海啸淹没预测仍然具有挑战性。在这里,我们提出了一种使用卷积神经网络(CNN)进行预警的海啸预测方法。针对东北的数值海啸预测实验表现出优异的性能,对于 1000 个未知的合成海啸场景,平均最大海啸幅度和海啸到达时间预测误差分别约为 0.4m 和 48s。我们的预测方法平均仅使用单个 CPU 节点就需要 0.004s。此外,仅使用合成海啸场景训练的 CNN 甚至可以使用 2011 年事件的实际观测数据进行合理的淹没预测,即使输入存在噪声。这些结果验证了人工智能海啸预测在提供快速准确预警方面的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b3/8050057/5f3f0fea5af4/41467_2021_22348_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验