Department of Molecular Genetics, University of Torontogrid.17063.33, Toronto, Ontario, Canada.
Department of Chemical Engineering and Applied Chemistry, University of Torontogrid.17063.33, Toronto, Ontario, Canada.
mSphere. 2022 Jun 29;7(3):e0007522. doi: 10.1128/msphere.00075-22. Epub 2022 May 9.
Fungal infections contribute to over 1.5 million deaths annually, with Candida albicans representing one of the most concerning human fungal pathogens. While normally commensal in nature, compromise of host immunity can result in C. albicans disseminating into the human bloodstream, causing infections with mortality rates of up to 40%. A contributing factor to this high mortality rate is the limited arsenal of antifungals approved to treat systemic infections. The most widely used antifungal class, the azoles, inhibits ergosterol biosynthesis by targeting Erg11. The rise of drug resistance among C. albicans clinical isolates, particularly against the azoles, has escalated the need to explore novel antifungal strategies. To address this challenge, we screened a 9,600-compound subset of the University of Tokyo Core Chemical Library to identify molecules with novel antifungal activity against C. albicans. The most potent hit molecule was CpdLC-6888, a 2,5-disubstituted pyridine compound, which inhibited growth of C. albicans and closely-related species. Chemical-genetic, biochemical, and modeling analyses suggest that CpdLC-6888 inhibits Erg11 in a manner similar to the azoles despite lacking the canonical five-membered nitrogen-containing azole ring. This work characterizes the antifungal activity of a 2,5-disubstituted pyridine against C. albicans, supporting the mining of existing chemical collections to identify compounds with novel antifungal activity. Pathogenic fungi represent a serious but underacknowledged threat to human health. The treatment and management of these infections relies heavily on the use of azole antifungals, a class of molecules that contain a five-membered nitrogen-containing ring and inhibit the biosynthesis of the key membrane sterol ergosterol. By employing a high-throughput chemical screen, we identified a 2,5-disubstituted pyridine, termed CpdLC-6888, as possessing antifungal activity against the prominent human fungal pathogen Candida albicans. Upon further investigation, we determined this molecule exhibits azole-like activity despite being structurally divergent. Specifically, transcriptional repression of the azole target gene resulted in hypersensitivity to CpdLC-6888, and treatment of C. albicans with this molecule blocked the production of the key membrane sterol ergosterol. Therefore, this work describes a chemical scaffold with novel antifungal activity against a prevalent and threatening fungal pathogen affecting human health, expanding the repertoire of compounds that can inhibit this useful antifungal drug target.
真菌感染每年导致超过 150 万人死亡,其中白色念珠菌是最令人关注的人类真菌病原体之一。虽然白色念珠菌在正常情况下是共生的,但宿主免疫功能的损害会导致白色念珠菌扩散到人体血液中,引起感染,死亡率高达 40%。造成这种高死亡率的一个因素是,批准用于治疗系统性感染的抗真菌药物数量有限。最广泛使用的抗真菌药物类别——唑类药物,通过靶向 Erg11 来抑制麦角固醇生物合成。白色念珠菌临床分离株对抗真菌药物的耐药性不断上升,尤其是对唑类药物的耐药性上升,这使得人们迫切需要探索新的抗真菌策略。为了应对这一挑战,我们筛选了东京大学核心化学文库中的 9600 种化合物亚库,以寻找具有抗白色念珠菌活性的新型抗真菌化合物。最有效的候选化合物是 CpdLC-6888,一种 2,5-二取代吡啶化合物,它能抑制白色念珠菌和密切相关的物种的生长。化学遗传、生化和建模分析表明,尽管 CpdLC-6888 缺乏典型的五元含氮唑环,但它以类似于唑类药物的方式抑制 Erg11。这项工作描述了 2,5-二取代吡啶对白色念珠菌的抗真菌活性,支持从现有化学库中挖掘具有新型抗真菌活性的化合物。
致病真菌对人类健康构成了严重但未被充分认识的威胁。这些感染的治疗和管理主要依赖于唑类抗真菌药物的使用,唑类药物是一类含有五元含氮环并抑制关键膜甾醇麦角固醇生物合成的分子。通过采用高通量化学筛选,我们发现一种 2,5-二取代吡啶,称为 CpdLC-6888,对主要的人类真菌病原体白色念珠菌具有抗真菌活性。进一步研究表明,尽管结构上存在差异,但该分子表现出唑类药物的活性。具体来说,唑类药物靶基因的转录抑制导致对 CpdLC-6888 的敏感性增加,用该分子处理白色念珠菌会阻断关键膜甾醇麦角固醇的产生。因此,这项工作描述了一种具有新型抗真菌活性的化学支架,针对影响人类健康的一种普遍且威胁性的真菌病原体,扩展了可以抑制这种有用的抗真菌药物靶标的化合物库。