Suppr超能文献

遗传分析表明 Hsp90 参与形态发生和唑类药物耐受性,而 Cdr1 参与唑类药物耐药性。

Genetic Analysis of Implicates Hsp90 in Morphogenesis and Azole Tolerance and Cdr1 in Azole Resistance.

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau, China.

出版信息

mBio. 2019 Jan 29;10(1):e02529-18. doi: 10.1128/mBio.02529-18.

Abstract

is an emerging fungal pathogen and a serious global health threat as the majority of clinical isolates display elevated resistance to currently available antifungal drugs. Despite the increased prevalence of infections, the mechanisms governing drug resistance remain largely elusive. In diverse fungi, the evolution of drug resistance is enabled by the essential molecular chaperone Hsp90, which stabilizes key regulators of cellular responses to drug-induced stress. Hsp90 also orchestrates temperature-dependent morphogenesis in , a key virulence trait. However, the role of Hsp90 in the pathobiology of remains unknown. In order to study regulatory functions of Hsp90 in , we placed under the control of a doxycycline-repressible promoter to enable transcriptional repression. We found that Hsp90 is essential for growth in and that it enables tolerance of clinical isolates with respect to the azoles, which inhibit biosynthesis of the membrane sterol ergosterol. High-level azole resistance was independent of Hsp90 but dependent on the ABC transporter , deletion of which resulted in abrogated resistance. Strikingly, we discovered that undergoes a morphogenetic transition from yeast to filamentous growth in response to depletion or cell cycle arrest but not in response to other cues that induce filamentation. Finally, we observed that this developmental transition is associated with global transcriptional changes, including the induction of cell wall-related genes. Overall, this report provides a novel insight into mechanisms of drug tolerance and resistance in and describes a developmental transition in response to perturbation of a core regulator of protein homeostasis. Fungal pathogens pose a serious threat to public health. is an emerging fungal pathogen that is often resistant to commonly used antifungal drugs. However, the mechanisms governing drug resistance and virulence in this organism remain largely unexplored. In this study, we adapted a conditional expression system to modulate the transcription of an essential gene, , which regulates antifungal resistance and virulence in diverse fungal pathogens. We showed that Hsp90 is essential for growth in and is important for tolerance of the clinically important azole antifungals, which block ergosterol biosynthesis. Further, we established that the Cdr1 efflux transporter regulates azole resistance. Finally, we discovered that transitions from yeast to filamentous growth in response to Hsp90 inhibition, accompanied by global transcriptional remodeling. Overall, this work provides a novel insight into mechanisms regulating azole resistance in and uncovers a distinct developmental program regulated by Hsp90.

摘要

是一种新兴的真菌病原体,也是一种严重的全球健康威胁,因为大多数临床分离株对现有的抗真菌药物表现出升高的耐药性。尽管 的患病率增加,但控制耐药性的机制在很大程度上仍难以捉摸。在不同的真菌中,药物抗性的进化是由必需的分子伴侣 Hsp90 所赋予的,它稳定了细胞对药物诱导的应激反应的关键调节剂。Hsp90 还协调了 在温度依赖性形态发生中的作用,这是一个关键的毒力特征。然而,Hsp90 在 的病理生物学中的作用仍然未知。为了研究 Hsp90 在 中的调节功能,我们将 置于可被强力霉素抑制的启动子的控制下,以实现转录抑制。我们发现 Hsp90 对 的生长是必需的,并且它使 对唑类药物(抑制细胞膜固醇麦角固醇的生物合成)具有耐受性。高水平的唑类耐药性与 Hsp90 无关,但依赖于 ABC 转运蛋白,其缺失导致耐药性丧失。引人注目的是,我们发现 在响应 Hsp90 耗竭或细胞周期阻滞时会发生从酵母到丝状生长的形态发生转变,但不会响应其他诱导 丝状生长的信号。最后,我们观察到这种发育转变与全局转录变化有关,包括细胞壁相关基因的诱导。总体而言,本报告为 在药物耐受和耐药性机制方面提供了新的见解,并描述了对蛋白质稳态核心调节剂的扰动的响应中的发育转变。真菌病原体对公共健康构成严重威胁。 是一种新兴的真菌病原体,通常对常用的抗真菌药物具有耐药性。然而,该生物体中控制耐药性和毒力的机制在很大程度上仍未被探索。在这项研究中,我们采用了一种条件表达系统来调节一个必需基因的转录,该基因在多种真菌病原体中调节抗真菌药物的耐药性和毒力。我们表明,Hsp90 对 的生长是必需的,并且对临床上重要的唑类抗真菌药物(阻断麦角固醇生物合成)的耐受性很重要。此外,我们确定了 Cdr1 外排转运蛋白调节唑类耐药性。最后,我们发现 Hsp90 抑制会导致 从酵母到丝状生长的转变,伴随着全局转录重塑。总体而言,这项工作为 中调节唑类耐药性的机制提供了新的见解,并揭示了由 Hsp90 调节的独特发育程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0787/6355988/2f6e0f51b3ac/mBio.02529-18-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验