Suppr超能文献

在缺乏金标准的情况下,简化对高特异性试验随时间推移的诊断检测准确性的估计。

Simplifying the estimation of diagnostic testing accuracy over time for high specificity tests in the absence of a gold standard.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA.

Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL), Monrovia, Liberia.

出版信息

Biometrics. 2023 Jun;79(2):1546-1558. doi: 10.1111/biom.13689. Epub 2022 May 26.

Abstract

Many different methods for evaluating diagnostic test results in the absence of a gold standard have been proposed. In this paper, we discuss how one common method, a maximum likelihood estimate for a latent class model found via the Expectation-Maximization (EM) algorithm can be applied to longitudinal data where test sensitivity changes over time. We also propose two simplified and nonparametric methods which use data-based indicator variables for disease status and compare their accuracy to the maximum likelihood estimation (MLE) results. We find that with high specificity tests, the performance of simpler approximations may be just as high as the MLE.

摘要

已经提出了许多不同的方法来评估缺乏金标准的诊断测试结果。在本文中,我们讨论了一种常见的方法,即通过期望最大化 (EM) 算法找到的潜在类别模型的最大似然估计,如何应用于随着时间的推移测试灵敏度发生变化的纵向数据。我们还提出了两种简化的非参数方法,它们使用基于数据的疾病状态指示变量,并将其准确性与最大似然估计 (MLE) 结果进行比较。我们发现,对于特异性高的测试,更简单的近似方法的性能可能与 MLE 一样高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验