Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA.
Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL), Monrovia, Liberia.
Biometrics. 2023 Jun;79(2):1546-1558. doi: 10.1111/biom.13689. Epub 2022 May 26.
Many different methods for evaluating diagnostic test results in the absence of a gold standard have been proposed. In this paper, we discuss how one common method, a maximum likelihood estimate for a latent class model found via the Expectation-Maximization (EM) algorithm can be applied to longitudinal data where test sensitivity changes over time. We also propose two simplified and nonparametric methods which use data-based indicator variables for disease status and compare their accuracy to the maximum likelihood estimation (MLE) results. We find that with high specificity tests, the performance of simpler approximations may be just as high as the MLE.
已经提出了许多不同的方法来评估缺乏金标准的诊断测试结果。在本文中,我们讨论了一种常见的方法,即通过期望最大化 (EM) 算法找到的潜在类别模型的最大似然估计,如何应用于随着时间的推移测试灵敏度发生变化的纵向数据。我们还提出了两种简化的非参数方法,它们使用基于数据的疾病状态指示变量,并将其准确性与最大似然估计 (MLE) 结果进行比较。我们发现,对于特异性高的测试,更简单的近似方法的性能可能与 MLE 一样高。