IEEE Trans Cybern. 2023 Jul;53(7):4094-4106. doi: 10.1109/TCYB.2022.3166604. Epub 2023 Jun 15.
The ability to reconstruct the kinematic parameters of hand movement using noninvasive electroencephalography (EEG) is essential for strength and endurance augmentation using exoskeleton/exosuit. For system development, the conventional classification-based brain-computer interface (BCI) controls external devices by providing discrete control signals to the actuator. A continuous kinematic reconstruction from EEG signal is better suited for practical BCI applications. The state-of-the-art multivariable linear regression (mLR) method provides a continuous estimate of hand kinematics, achieving a maximum correlation of up to 0.67 between the measured and the estimated hand trajectory. In this work, three novel source aware deep learning models are proposed for motion trajectory prediction (MTP). In particular, multilayer perceptron (MLP), convolutional neural network-long short-term memory (CNN-LSTM), and wavelet packet decomposition (WPD) for CNN-LSTM are presented. In addition, novelty in the work includes the utilization of brain source localization (BSL) [using standardized low-resolution brain electromagnetic tomography (sLORETA)] for the reliable decoding of motor intention. The information is utilized for channel selection and accurate EEG time segment selection. The performance of the proposed models is compared with the traditionally utilized mLR technique on the reach, grasp, and lift (GAL) dataset. The effectiveness of the proposed framework is established using the Pearson correlation coefficient (PCC) and trajectory analysis. A significant improvement in the correlation coefficient is observed when compared with the state-of-the-art mLR model. Our work bridges the gap between the control and the actuator block, enabling real-time BCI implementation.
使用非侵入性脑电图 (EEG) 重建手部运动运动学参数对于使用外骨骼/外骨骼增强力量和耐力至关重要。对于系统开发,传统的基于分类的脑机接口 (BCI) 通过向执行器提供离散控制信号来控制外部设备。从 EEG 信号进行连续的运动重建更适合实际的 BCI 应用。最先进的多变量线性回归 (mLR) 方法提供了手部运动学的连续估计,实现了测量和估计手轨迹之间高达 0.67 的最大相关性。在这项工作中,提出了三种新颖的源感知深度学习模型用于运动轨迹预测 (MTP)。特别是,提出了多层感知器 (MLP)、卷积神经网络长短期记忆 (CNN-LSTM) 和小波包分解 (WPD) 用于 CNN-LSTM。此外,工作中的新颖之处包括利用脑源定位 (BSL) [使用标准化低分辨率脑电磁层析成像 (sLORETA)] 可靠解码运动意图。该信息用于通道选择和准确的 EEG 时间段选择。在所提出的模型上,将其与传统的 mLR 技术在到达、抓握和提升 (GAL) 数据集上的性能进行了比较。使用 Pearson 相关系数 (PCC) 和轨迹分析来确定所提出框架的有效性。与最先进的 mLR 模型相比,观察到相关系数有了显著提高。我们的工作弥合了控制和执行器块之间的差距,实现了实时 BCI 实施。