Suppr超能文献

基于脑电图μ波和β波功率的三维手部运动轨迹预测

3D hand motion trajectory prediction from EEG mu and beta bandpower.

作者信息

Korik A, Sosnik R, Siddique N, Coyle D

机构信息

Intelligent Systems Research Centre, Ulster University, Derry, Northern Ireland, United Kingdom.

Hybrid BCI Lab, Holon Institute of Technology, Holon, Israel.

出版信息

Prog Brain Res. 2016;228:71-105. doi: 10.1016/bs.pbr.2016.05.001. Epub 2016 Aug 8.

Abstract

A motion trajectory prediction (MTP) - based brain-computer interface (BCI) aims to reconstruct the three-dimensional (3D) trajectory of upper limb movement using electroencephalography (EEG). The most common MTP BCI employs a time series of bandpass-filtered EEG potentials (referred to here as the potential time-series, PTS, model) for reconstructing the trajectory of a 3D limb movement using multiple linear regression. These studies report the best accuracy when a 0.5-2Hz bandpass filter is applied to the EEG. In the present study, we show that spatiotemporal power distribution of theta (4-8Hz), mu (8-12Hz), and beta (12-28Hz) bands are more robust for movement trajectory decoding when the standard PTS approach is replaced with time-varying bandpower values of a specified EEG band, ie, with a bandpower time-series (BTS) model. A comprehensive analysis comprising of three subjects performing pointing movements with the dominant right arm toward six targets is presented. Our results show that the BTS model produces significantly higher MTP accuracy (R0.45) compared to the standard PTS model (R0.2). In the case of the BTS model, the highest accuracy was achieved across the three subjects typically in the mu (8-12Hz) and low-beta (12-18Hz) bands. Additionally, we highlight a limitation of the commonly used PTS model and illustrate how this model may be suboptimal for decoding motion trajectory relevant information. Although our results, showing that the mu and beta bands are prominent for MTP, are not in line with other MTP studies, they are consistent with the extensive literature on classical multiclass sensorimotor rhythm-based BCI studies (classification of limbs as opposed to motion trajectory prediction), which report the best accuracy of imagined limb movement classification using power values of mu and beta frequency bands. The methods proposed here provide a positive step toward noninvasive decoding of imagined 3D hand movements for movement-free BCIs.

摘要

基于运动轨迹预测(MTP)的脑机接口(BCI)旨在利用脑电图(EEG)重建上肢运动的三维(3D)轨迹。最常见的MTP BCI采用带通滤波后的EEG电位时间序列(在此称为电位时间序列,PTS,模型),通过多元线性回归来重建3D肢体运动的轨迹。这些研究报告称,当对EEG应用0.5 - 2Hz带通滤波器时,准确率最高。在本研究中,我们表明,当用特定EEG频段的时变带功率值(即带功率时间序列,BTS,模型)取代标准PTS方法时,θ(4 - 8Hz)、μ(8 - 12Hz)和β(12 - 28Hz)频段的时空功率分布对于运动轨迹解码更为稳健。本文呈现了一项综合分析,其中包括三名受试者用优势右臂向六个目标进行指向运动。我们的结果表明,与标准PTS模型(R0.2)相比,BTS模型产生的MTP准确率显著更高(R0.45)。对于BTS模型,通常在μ(8 - 12Hz)和低β(12 - 18Hz)频段,三名受试者的准确率最高。此外,我们强调了常用PTS模型的一个局限性,并说明了该模型在解码运动轨迹相关信息方面可能如何次优。尽管我们的结果表明μ和β频段在MTP中很突出,但这与其他MTP研究不一致,不过它们与基于经典多类感觉运动节律的BCI研究(肢体分类而非运动轨迹预测)的大量文献一致,这些文献报告了使用μ和β频段功率值进行想象肢体运动分类的最佳准确率。这里提出的方法朝着无运动BCI对想象3D手部运动的无创解码迈出了积极的一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验