Suppr超能文献

基于 MRI 的前列腺和优势病灶分割的级联评分卷积神经网络方法

MRI-based prostate and dominant lesion segmentation using cascaded scoring convolutional neural network.

机构信息

Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA.

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

Med Phys. 2022 Aug;49(8):5216-5224. doi: 10.1002/mp.15687. Epub 2022 May 17.

Abstract

PURPOSE

Dose escalation to dominant intraprostatic lesions (DILs) is a novel treatment strategy to improve the treatment outcome of prostate radiation therapy. Treatment planning requires accurate and fast delineation of the prostate and DILs. In this study, a 3D cascaded scoring convolutional neural network is proposed to automatically segment the prostate and DILs from MRI.

METHODS AND MATERIALS

The proposed cascaded scoring convolutional neural network performs end-to-end segmentation by locating a region-of-interest (ROI), identifying the object within the ROI, and defining the target. A scoring strategy, which is learned to judge the segmentation quality of DIL, is integrated into cascaded convolutional neural network to solve the challenge of segmenting the irregular shapes of the DIL. To evaluate the proposed method, 77 patients who underwent MRI and PET/CT were retrospectively investigated. The prostate and DIL ground truth contours were delineated by experienced radiologists. The proposed method was evaluated with fivefold cross-validation and holdout testing.

RESULTS

The average centroid distance, volume difference, and Dice similarity coefficient (DSC) value for prostate/DIL are 4.3 ± 7.5/3.73 ± 3.78 mm, 4.5 ± 7.9/0.41 ± 0.59 cc, and 89.6 ± 8.9/84.3 ± 11.9%, respectively. Comparable results were obtained in the holdout test. Similar or superior segmentation outcomes were seen when compared the results of the proposed method to those of competing segmentation approaches.

CONCLUSIONS

The proposed automatic segmentation method can accurately and simultaneously segment both the prostate and DILs. The intended future use for this algorithm is focal boost prostate radiation therapy.

摘要

目的

对优势前列腺内病变(DIL)进行剂量递增是改善前列腺放射治疗效果的一种新的治疗策略。治疗计划需要准确快速地描绘前列腺和 DIL。在这项研究中,提出了一种 3D 级联评分卷积神经网络,用于从 MRI 自动分割前列腺和 DIL。

方法与材料

所提出的级联评分卷积神经网络通过定位感兴趣区域(ROI)、识别 ROI 内的对象和定义目标来进行端到端分割。集成了评分策略,该策略用于判断 DIL 的分割质量,以解决分割 DIL 不规则形状的挑战。为了评估所提出的方法,对 77 例接受 MRI 和 PET/CT 的患者进行了回顾性研究。由经验丰富的放射科医生对前列腺和 DIL 的真实轮廓进行了描绘。使用五重交叉验证和保留测试对所提出的方法进行了评估。

结果

前列腺/DIL 的平均质心距离、体积差异和 Dice 相似系数(DSC)值分别为 4.3±7.5/3.73±3.78mm、4.5±7.9/0.41±0.59cc 和 89.6±8.9/84.3±11.9%。保留测试中获得了可比的结果。与竞争分割方法的结果相比,所提出的方法的分割结果相似或更优。

结论

所提出的自动分割方法可以准确、同时分割前列腺和 DIL。该算法的预期未来用途是前列腺局部增强放射治疗。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验