Suppr超能文献

在MRI引导的高剂量率前列腺近距离放射治疗中使用深度监督卷积神经网络进行自动多导管检测。

Automatic multi-catheter detection using deeply supervised convolutional neural network in MRI-guided HDR prostate brachytherapy.

作者信息

Dai Xianjin, Lei Yang, Zhang Yupei, Qiu Richard L J, Wang Tonghe, Dresser Sean A, Curran Walter J, Patel Pretesh, Liu Tian, Yang Xiaofeng

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA.

出版信息

Med Phys. 2020 Sep;47(9):4115-4124. doi: 10.1002/mp.14307. Epub 2020 Jun 15.

Abstract

PURPOSE

High-dose-rate (HDR) brachytherapy is an established technique to be used as monotherapy option or focal boost in conjunction with external beam radiation therapy (EBRT) for treating prostate cancer. Radiation source path reconstruction is a critical procedure in HDR treatment planning. Manually identifying the source path is labor intensive and time inefficient. In recent years, magnetic resonance imaging (MRI) has become a valuable imaging modality for image-guided HDR prostate brachytherapy due to its superb soft-tissue contrast for target delineation and normal tissue contouring. The purpose of this study is to investigate a deep-learning-based method to automatically reconstruct multiple catheters in MRI for prostate cancer HDR brachytherapy treatment planning.

METHODS

Attention gated U-Net incorporated with total variation (TV) regularization model was developed for multi-catheter segmentation in MRI. The attention gates were used to improve the accuracy of identifying small catheter points, while TV regularization was adopted to encode the natural spatial continuity of catheters into the model. The model was trained using the binary catheter annotation images offered by experienced physicists as ground truth paired with original MRI images. After the network was trained, MR images of a new prostate cancer patient receiving HDR brachytherapy were fed into the model to predict the locations and shapes of all the catheters. Quantitative assessments of our proposed method were based on catheter shaft and tip errors compared to the ground truth.

RESULTS

Our method detected 299 catheters from 20 patients receiving HDR prostate brachytherapy with a catheter tip error of 0.37 ± 1.68 mm and a catheter shaft error of 0.93 ± 0.50 mm. For detection of catheter tips, our method resulted in 87% of the catheter tips within an error of less than ± 2.0 mm, and more than 71% of the tips can be localized within an absolute error of no >1.0 mm. For catheter shaft localization, 97% of catheters were detected with an error of <2.0 mm, while 63% were within 1.0 mm.

CONCLUSIONS

In this study, we proposed a novel multi-catheter detection method to precisely localize the tips and shafts of catheters in three-dimensional MRI images of HDR prostate brachytherapy. It paves the way for elevating the quality and outcome of MRI-guided HDR prostate brachytherapy.

摘要

目的

高剂量率(HDR)近距离放射治疗是一种既定技术,可作为单一疗法或与外照射放疗(EBRT)联合用于前列腺癌的局部增敏治疗。放射源路径重建是HDR治疗计划中的关键步骤。手动识别源路径既费力又低效。近年来,磁共振成像(MRI)因其在靶区勾画和正常组织轮廓描绘方面具有出色的软组织对比度,已成为图像引导HDR前列腺近距离放射治疗的一种有价值的成像方式。本研究的目的是研究一种基于深度学习的方法,用于在MRI中自动重建前列腺癌HDR近距离放射治疗计划中的多个导管。

方法

开发了结合全变差(TV)正则化模型的注意力门控U-Net用于MRI中的多导管分割。注意力门用于提高识别小导管点的准确性,同时采用TV正则化将导管的自然空间连续性编码到模型中。使用经验丰富的物理学家提供的二元导管标注图像作为与原始MRI图像配对的真值来训练模型。网络训练完成后,将接受HDR近距离放射治疗的新前列腺癌患者的MR图像输入模型,以预测所有导管的位置和形状。我们提出的方法的定量评估基于与真值相比的导管杆和尖端误差。

结果

我们的方法从20例接受HDR前列腺近距离放射治疗的患者中检测到299根导管,导管尖端误差为0.37±1.68毫米,导管杆误差为0.93±0.50毫米。对于导管尖端的检测,我们的方法使87%的导管尖端误差小于±2.0毫米,超过71%的尖端可在绝对误差不大于1.0毫米的范围内定位。对于导管杆定位,97%的导管检测误差<2.0毫米,而63%在1.0毫米以内。

结论

在本研究中,我们提出了一种新颖的多导管检测方法,用于在HDR前列腺近距离放射治疗的三维MRI图像中精确定位导管的尖端和杆。它为提高MRI引导的HDR前列腺近距离放射治疗的质量和效果铺平了道路。

相似文献

引用本文的文献

2
A review of artificial intelligence in brachytherapy.近距离放射治疗中的人工智能综述。
J Appl Clin Med Phys. 2025 Jun;26(6):e70034. doi: 10.1002/acm2.70034. Epub 2025 Feb 27.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验