Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China.
College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom.
Proc Natl Acad Sci U S A. 2022 May 17;119(20):e2101186119. doi: 10.1073/pnas.2101186119. Epub 2022 May 9.
Fire is an important climate-driven disturbance in terrestrial ecosystems, also modulated by human ignitions or fire suppression. Changes in fire emissions can feed back on the global carbon cycle, but whether the trajectories of changing fire activity will exacerbate or attenuate climate change is poorly understood. Here, we quantify fire dynamics under historical and future climate and human demography using a coupled global climate–fire–carbon cycle model that emulates 34 individual Earth system models (ESMs). Results are compared with counterfactual worlds, one with a constant preindustrial fire regime and another without fire. Although uncertainty in projected fire effects is large and depends on ESM, socioeconomic trajectory, and emissions scenario, we find that changes in human demography tend to suppress global fire activity, keeping more carbon within terrestrial ecosystems and attenuating warming. Globally, changes in fire have acted to warm climate throughout most of the 20th century. However, recent and predicted future reductions in fire activity may reverse this, enhancing land carbon uptake and corresponding to offsetting ∼5 to 10 y of global CO2 emissions at today’s levels. This potentially reduces warming by up to 0.11 °C by 2100. We show that climate–carbon cycle feedbacks, as caused by changing fire regimes, are most effective at slowing global warming under lower emission scenarios. Our study highlights that ignitions and active and passive fire suppression can be as important in driving future fire regimes as changes in climate, although with some risk of more extreme fires regionally and with implications for other ecosystem functions in fire-dependent ecosystems.
火灾是陆地生态系统中一种重要的气候驱动干扰因素,也受到人类点火或灭火的影响。火灾排放的变化会对全球碳循环产生反馈,但不断变化的火灾活动轨迹是否会加剧或缓解气候变化仍不清楚。在这里,我们使用一种耦合的全球气候-火灾-碳循环模型来量化历史和未来气候以及人类人口统计学下的火灾动态,该模型模拟了 34 个独立的地球系统模型(ESM)。结果与反事实世界进行了比较,一个是具有恒定的前工业化火灾制度的世界,另一个是没有火灾的世界。尽管预测火灾影响的不确定性很大,并且取决于 ESM、社会经济轨迹和排放情景,但我们发现,人类人口统计学的变化往往会抑制全球火灾活动,使更多的碳留在陆地生态系统中,从而减缓变暖。在整个 20 世纪,火灾变化使全球气候变暖。然而,最近和预测未来的火灾活动减少可能会扭转这种局面,增强陆地碳吸收,并相应地抵消当今水平的全球 CO2 排放约 5 到 10 年。这可能会使 2100 年的变暖减少高达 0.11°C。我们表明,由于火灾制度的变化而引起的气候-碳循环反馈在较低排放情景下对减缓全球变暖最为有效。我们的研究强调,点火以及主动和被动的灭火在驱动未来火灾制度方面与气候变化一样重要,尽管这存在着区域性出现更极端火灾的风险,并对火灾依赖型生态系统中的其他生态系统功能产生影响。