School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China.
Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2021 Mar 24;143(11):4302-4310. doi: 10.1021/jacs.0c12963. Epub 2021 Mar 11.
The understanding of structure-activity relationships at the atomic level has played a profound role in heterogeneous catalysis, providing valuable insights into designing suitable heterogeneous catalysts. However, uncovering the detailed roles of how such active species' structures affect their catalytic performance remains a challenge owing to the lack of direct structural information on a specific active species. Herein, we deposited molybdenum(VI), an active species in oxidation reactions, on the Zr node of a mesoporous zirconium-based metal-organic framework (MOF) NU-1200, using solvothermal deposition in MOFs (SIM). Due to the high crystallinity of the NU-1200 support, the precise structure of the resulting molybdenum catalyst, Mo-NU-1200, was characterized through single-crystal X-ray diffraction (SCXRD). Two distinct anchoring modes of the molybdenum species were observed: one mode (Mo1), displaying an octahedral geometry, coordinated to the node through one terminal oxygen atom and the other mode (Mo2) coordinated to two adjacent Zr node oxygen atoms in a tetrahedral geometry. To investigate the role of base in the catalytic activity of these Mo centers, we assessed the activity of Mo-NU-1200 for the aerobic oxidation of 4-methoxybenzyl alcohol as a model reaction. The results revealed that Mo-NU-1200 exhibited remarkably higher catalytic reactivity under base-free conditions, while the presence of base inhibited the catalytic reactivity of this species. SCXRD studies revealed that the molybdenum binding motifs (structures of the supported metal on the Zr node in the MOF) changed over the course of the reactions. Following the oxidation without base, both pristine coordination modes (Mo1 and Mo2) evolved into a new coordination mode (Mo3), in which the molybdenum atom coordinated to two adjacent oxygen atoms from the Zr node in an octahedral geometry, while in the presence of base, the pristine Mo1 coordination mode evolved entirely into the pristine Mo2. This study demonstrates the direct observation of an active species' structural evolution from metal installation to subsequent catalytic reaction. As a result, these subtle structural changes in catalyst binding motifs led to distinct differences in catalytic activities, providing a compelling strategy for elucidating structure-activity relationships.
原子水平上的结构-活性关系的理解在多相催化中发挥了深远的作用,为设计合适的多相催化剂提供了有价值的见解。然而,由于缺乏对特定活性物种的直接结构信息,揭示这些活性物种的结构如何影响其催化性能的详细作用仍然是一个挑战。在此,我们通过在 MOFs 中的溶剂热沉积(SIM),将钼(VI)(氧化反应中的一种活性物种)沉积在介孔锆基金属有机骨架(MOF)NU-1200 的 Zr 节点上。由于 NU-1200 载体的高结晶度,通过单晶 X 射线衍射(SCXRD)对所得钼催化剂 Mo-NU-1200 的精确结构进行了表征。观察到两种不同的钼物种的锚固模式:一种模式(Mo1),显示八面体几何形状,通过一个末端氧原子与节点配位,另一种模式(Mo2)以四面体几何形状与两个相邻的 Zr 节点氧原子配位。为了研究碱在这些 Mo 中心的催化活性中的作用,我们评估了 Mo-NU-1200 在 4-甲氧基苄醇的有氧氧化反应中的模型反应的活性。结果表明,Mo-NU-1200 在无碱条件下表现出显著更高的催化反应性,而碱的存在抑制了该物种的催化反应性。SCXRD 研究表明,在反应过程中,钼的结合基序(MOF 中 Zr 节点上负载金属的结构)发生了变化。在没有碱的氧化之后,原始的配位模式(Mo1 和 Mo2)都演变成了一种新的配位模式(Mo3),其中钼原子以八面体几何形状与来自 Zr 节点的两个相邻氧原子配位,而在有碱的情况下,原始的 Mo1 配位模式完全演变成原始的 Mo2。这项研究证明了从金属安装到后续催化反应的活性物种结构演化的直接观察。因此,催化剂结合基序中的这些细微结构变化导致了催化活性的明显差异,为阐明结构-活性关系提供了一种引人注目的策略。