Suppr超能文献

低剂量胸部 CT 应用深度学习图像重建对肺气肿进行定量分析。

Pulmonary emphysema quantification at low dose chest CT using Deep Learning image reconstruction.

机构信息

Department of Radiology, Amiens University Hospital, 1 Rond-Point du Professeur Christian Cabrol, F-80054 Amiens Cedex 01, France.

Biophysics and Image Processing Unit, Amiens University Hospital, Amiens, France.

出版信息

Eur J Radiol. 2022 Jul;152:110338. doi: 10.1016/j.ejrad.2022.110338. Epub 2022 May 5.

Abstract

PURPOSE

Quantitative analysis of emphysema volume is affected by the radiation dose and the CT reconstruction technique. We aim to evaluate the influence of a commercially available deep learning image reconstruction algorithm (DLIR) on the quantification of pulmonary emphysema in low-dose chest CT.

METHODS

We performed a retrospective study of low dose chest CT scans in 54 patients with chronic obstructive pulmonary disease (COPD). Raw data were reconstructed using FBP, iterative reconstruction (ASIR-V 70%) and deep learning based algorithms at high, medium and low-strength (DLIR -H, -M, -L). Filtered FBP images served as reference. Pulmonary emphysema volume (proportion of voxels below -950 UH) was measured on each reconstruction dataset and visually assessed by a chest radiologist. Quantitative image quality was assessed by placing 3 regions of interest in the trachea, in air and in a paraspinal muscle. Signal to noise ratio was also measured.

RESULTS

The mean CDTIvol was 2.38 ± 0.68 mGy. Significant differences in emphysema volumes between the filtered FBP reference and ASIR-V, DLIR-H, DLIR-M or DLIR-L were observed, (p < 10) for all. A strong correlation between filtered FBP volumes and DLIR-H was reported (r = 0.999, p < 10), a 10% overestimation with DLIR-H being observed. Noise was significantly reduced in DLIR-H volumes compared to the other reconstruction methods. Signal to noise ratio was improved when using DLIR-H (p < 10).

CONCLUSION

There are significant differences regarding emphysema volumes between FBP, iterative reconstruction or deep learning-based DLIR algorithm. DLIR-H shows the closest correlation to filtered FBP while increasing SNR.

摘要

目的

肺气肿体积的定量分析受辐射剂量和 CT 重建技术的影响。我们旨在评估一种商用深度学习图像重建算法(DLIR)对低剂量胸部 CT 中肺肺气肿定量的影响。

方法

我们对 54 例慢性阻塞性肺疾病(COPD)患者的低剂量胸部 CT 扫描进行了回顾性研究。原始数据使用 FBP、迭代重建(ASIR-V 70%)和高、中、低强度的深度学习算法(DLIR-H、-M、-L)进行重建。滤波 FBP 图像作为参考。在每个重建数据集上测量肺气肿体积(低于-950 UH 的体素比例),并由胸部放射科医生进行视觉评估。通过在气管、空气和脊柱旁肌肉中放置 3 个感兴趣区域来评估图像质量。还测量了信噪比。

结果

平均 CDTIvol 为 2.38 ± 0.68 mGy。在滤波 FBP 参考与 ASIR-V、DLIR-H、DLIR-M 或 DLIR-L 之间,观察到肺气肿体积存在显著差异(p < 10)。报告了滤波 FBP 体积与 DLIR-H 之间的强相关性(r = 0.999,p < 10),观察到 DLIR-H 有 10%的高估。与其他重建方法相比,DLIR-H 中的噪声显著降低。使用 DLIR-H 时,信噪比得到提高(p < 10)。

结论

在 FBP、迭代重建或基于深度学习的 DLIR 算法之间,肺气肿体积存在显著差异。DLIR-H 与滤波 FBP 具有最密切的相关性,同时提高了 SNR。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验