Suppr超能文献

与迭代重建和滤波反投影相比,深度学习图像重建算法对头颈和胸部 CT 检查降低辐射剂量和图像噪声的影响:系统评价。

Influence of deep learning image reconstruction algorithm for reducing radiation dose and image noise compared to iterative reconstruction and filtered back projection for head and chest computed tomography examinations: a systematic review.

机构信息

Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Department of Radio Diagnosis and Imaging, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

出版信息

F1000Res. 2024 Apr 15;13:274. doi: 10.12688/f1000research.147345.1. eCollection 2024.

Abstract

BACKGROUND

The most recent advances in Computed Tomography (CT) image reconstruction technology are Deep learning image reconstruction (DLIR) algorithms. Due to drawbacks in Iterative reconstruction (IR) techniques such as negative image texture and nonlinear spatial resolutions, DLIRs are gradually replacing them. However, the potential use of DLIR in Head and Chest CT has to be examined further. Hence, the purpose of the study is to review the influence of DLIR on Radiation dose (RD), Image noise (IN), and outcomes of the studies compared with IR and FBP in Head and Chest CT examinations.

METHODS

We performed a detailed search in PubMed, Scopus, Web of Science, Cochrane Library, and Embase to find the articles reported using DLIR for Head and Chest CT examinations between 2017 to 2023. Data were retrieved from the short-listed studies using Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines.

RESULTS

Out of 196 articles searched, 15 articles were included. A total of 1292 sample size was included. 14 articles were rated as high and 1 article as moderate quality. All studies compared DLIR to IR techniques. 5 studies compared DLIR with IR and FBP. The review showed that DLIR improved IQ, and reduced RD and IN for CT Head and Chest examinations.

CONCLUSIONS

DLIR algorithm have demonstrated a noted enhancement in IQ with reduced IN for CT Head and Chest examinations at lower dose compared with IR and FBP. DLIR showed potential for enhancing patient care by reducing radiation risks and increasing diagnostic accuracy.

摘要

背景

最近的计算机断层扫描(CT)图像重建技术进展是深度学习图像重建(DLIR)算法。由于迭代重建(IR)技术的缺点,如图像纹理负向和非线性空间分辨率,DLIR 逐渐取代了它们。然而,DLIR 在头部和胸部 CT 中的潜在应用需要进一步研究。因此,本研究的目的是回顾 DLIR 对头部和胸部 CT 检查的辐射剂量(RD)、图像噪声(IN)和研究结果的影响,与 IR 和 FBP 进行比较。

方法

我们在 PubMed、Scopus、Web of Science、Cochrane 图书馆和 Embase 中进行了详细搜索,以查找 2017 年至 2023 年间使用 DLIR 进行头部和胸部 CT 检查的文章。使用系统评价和荟萃分析的首选报告项目(PRISMA)指南从入选研究中提取数据。

结果

在搜索到的 196 篇文章中,有 15 篇被纳入。共有 1292 个样本量被纳入。14 篇文章被评为高质量,1 篇文章为中等质量。所有研究均将 DLIR 与 IR 技术进行比较。5 项研究将 DLIR 与 IR 和 FBP 进行了比较。综述表明,DLIR 可提高 IQ,并降低头部和胸部 CT 检查的 RD 和 IN。

结论

与 IR 和 FBP 相比,DLIR 算法在降低剂量的情况下,可显著提高 IQ,并降低 CT 头部和胸部检查的 IN。DLIR 显示出通过降低辐射风险和提高诊断准确性来增强患者护理的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/11079581/ca1e41e0d2bf/f1000research-13-161532-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验