Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA.
Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
Abdom Radiol (NY). 2023 Oct;48(10):3253-3264. doi: 10.1007/s00261-023-03992-0. Epub 2023 Jun 27.
CT image reconstruction has evolved from filtered back projection to hybrid- and model-based iterative reconstruction. Deep learning-based image reconstruction is a relatively new technique that uses deep convolutional neural networks to improve image quality.
To evaluate and compare 1.25 mm thin-section abdominal CT images reconstructed with deep learning image reconstruction (DLIR) with 5 mm thick images reconstructed with adaptive statistical iterative reconstruction (ASIR-V).
This retrospective study included 52 patients (31 F; 56.9±16.9 years) who underwent abdominal CT scans between August-October 2019. Image reconstruction was performed to generate 5 mm images at 40% ASIR-V and 1.25 mm DLIR images at three strengths (low [DLIR-L], medium [DLIR-M], and high [DLIR-H]). Qualitative assessment was performed to determine image noise, contrast, visibility of small structures, sharpness, and artifact based on a 5-point-scale. Image preference determination was based on a 3-point-scale. Quantitative assessment included measurement of attenuation, image noise, and contrast-to-noise ratios (CNR).
Thin-section images reconstructed with DLIR-M and DLIR-H yielded better image quality scores than 5 mm ASIR-V reconstructed images. Mean qualitative scores of DLIR-H for noise (1.77 ± 0.71), contrast (1.6 ± 0.68), small structure visibility (1.42 ± 0.66), sharpness (1.34 ± 0.55), and image preference (1.11 ± 0.34) were the best (p<0.05). DLIR-M yielded intermediate scores. All DLIR reconstructions showed superior ratings for artifacts compared to ASIR-V (p<0.05), whereas each DLIR group performed comparably (p>0.05, 0.405-0.763). In the quantitative assessment, there were no significant differences in attenuation values between all reconstructions (p>0.05). However, DLIR-H demonstrated the lowest noise (9.17 ± 3.11) and the highest CNR (CNR = 26.88 ± 6.54 and CNR = 7.92 ± 3.85) (all p<0.001).
DLIR allows generation of thin-section (1.25 mm) abdominal CT images, which provide improved image quality with higher inter-reader agreement compared to 5 mm thick images reconstructed with ASIR-V.
Improved image quality of thin-section CT images reconstructed with DLIR has several benefits in clinical practice, such as improved diagnostic performance without radiation dose penalties.
CT 图像重建已经从滤波反投影发展到基于混合和模型的迭代重建。基于深度学习的图像重建是一种相对较新的技术,它使用深度卷积神经网络来提高图像质量。
评估和比较使用深度学习图像重建(DLIR)重建的 1.25 毫米薄层腹部 CT 图像与使用自适应统计迭代重建(ASIR-V)重建的 5 毫米厚图像。
这是一项回顾性研究,纳入了 2019 年 8 月至 10 月间进行腹部 CT 扫描的 52 名患者(31 名女性;56.9±16.9 岁)。通过生成 40%ASIR-V 的 5 毫米图像和三个强度(低 [DLIR-L]、中 [DLIR-M] 和高 [DLIR-H])的 1.25 毫米 DLIR 图像来进行图像重建。基于 5 分制评估图像噪声、对比度、小结构可见度、锐度和伪影。基于 3 分制确定图像偏好。定量评估包括测量衰减、图像噪声和对比噪声比(CNR)。
与 5 毫米 ASIR-V 重建图像相比,使用 DLIR-M 和 DLIR-H 重建的薄层图像获得了更好的图像质量评分。DLIR-H 的平均定性噪声评分(1.77 ± 0.71)、对比度(1.6 ± 0.68)、小结构可见度(1.42 ± 0.66)、锐度(1.34 ± 0.55)和图像偏好(1.11 ± 0.34)最高(p<0.05)。DLIR-M 产生了中等评分。与 ASIR-V 相比,所有 DLIR 重建在评估伪影方面均表现出更好的评分(p<0.05),而每个 DLIR 组的表现均相当(p>0.05,0.405-0.763)。在定量评估中,所有重建的衰减值之间没有显著差异(p>0.05)。然而,DLIR-H 显示出最低的噪声(9.17 ± 3.11)和最高的 CNR(CNR=26.88 ± 6.54 和 CNR=7.92 ± 3.85)(均 p<0.001)。
DLIR 允许生成 1.25 毫米(薄层)腹部 CT 图像,与使用 ASIR-V 重建的 5 毫米厚图像相比,其提供了更高的图像质量,具有更高的读者间一致性。
使用 DLIR 重建的薄层 CT 图像的图像质量得到改善,在临床实践中有多种益处,例如在不增加辐射剂量的情况下提高诊断性能。