Suppr超能文献

具有异质性的前额叶皮层生物详细网络模型中持续活动的约束条件。

Constraints on persistent activity in a biologically detailed network model of the prefrontal cortex with heterogeneities.

机构信息

Department of Mathematics and Center for Biodynamics, Boston University, Boston, MA 02215, USA; Department of Theoretical Neuroscience, Bernstein Center for Computational Neuroscience, Central Institute of Mental Health, Heidelberg University, J 5 68159 Mannheim, Germany; Faculty of Applied Psychology, SRH University Heidelberg, 69123 Heidelberg, Germany.

Department of Mathematics and Center for Biodynamics, Boston University, Boston, MA 02215, USA; Department of Applied Physics and Institut d'Investigació per a la Gestió Integrada de Zones Costaneres (IGIC), Universitat Politècnica de València, 46730 Gandia, Spain.

出版信息

Prog Neurobiol. 2022 Aug;215:102287. doi: 10.1016/j.pneurobio.2022.102287. Epub 2022 May 6.

Abstract

Persistent activity, the maintenance of neural activation over short periods of time in cortical networks, is widely thought to underlie the cognitive function of working memory. A large body of modeling studies has reproduced this kind of activity using cell assemblies with strengthened synaptic connections. However, almost all of these studies have considered persistent activity within networks with homogeneous neurons and synapses, making it difficult to judge the validity of such model results for cortical dynamics, which is based on highly heterogeneous neurons. Here, we consider persistent activity in a detailed, strongly data-driven network model of the prefrontal cortex with heterogeneous neuron and synapse parameters. Surprisingly, persistent activity could not be reproduced in this model without incorporating further constraints. We identified three factors that prevent successful persistent activity: heterogeneity in the cell parameters of interneurons, heterogeneity in the parameters of short-term synaptic plasticity and heterogeneity in the synaptic weights. We also discovered a general dynamic mechanism that prevents persistent activity in the presence of heterogeneities, namely a gradual drop-out of cell assembly neurons out of a bistable regime as input variability increases. Based on this mechanism, we found that persistent activity is recovered if heterogeneity is compensated, e.g., by a homeostatic plasticity mechanism. Cell assemblies shaped in this way may be potentially targeted by distinct inputs or become more responsive to specific tuning or spectral properties. Finally, we show that persistent activity in the model is robust against external noise, but the compensation of heterogeneities may prevent the dynamic generation of intrinsic in vivo-like irregular activity. These results may help informing the ongoing debate about the neural basis of working memory.

摘要

持续活动,即在皮质网络中,神经激活在短时间内的维持,被广泛认为是工作记忆的认知功能的基础。大量的建模研究使用突触连接增强的细胞集合来再现这种活动。然而,几乎所有这些研究都考虑了具有同质神经元和突触的网络中的持续活动,因此很难判断这些模型结果对于基于高度异质神经元的皮质动力学的有效性。在这里,我们考虑了使用具有异质神经元和突触参数的详细、强数据驱动的前额叶皮质网络模型中的持续活动。令人惊讶的是,如果不引入进一步的约束条件,这个模型中无法再现持续活动。我们确定了三个因素,它们阻止了成功的持续活动:中间神经元细胞参数的异质性、短期突触可塑性参数的异质性以及突触权重的异质性。我们还发现了一种防止异质性存在时持续活动的一般动态机制,即随着输入可变性的增加,细胞集合神经元逐渐从双稳态状态中脱离。基于这个机制,我们发现,如果异质性得到补偿,例如通过自平衡可塑性机制,持续活动就可以恢复。以这种方式形成的细胞集合可能会受到不同输入的潜在靶向作用,或者对特定的调谐或频谱特性变得更加敏感。最后,我们表明,模型中的持续活动对外部噪声具有鲁棒性,但异质性的补偿可能会阻止内在的类似体内的不规则活动的动态产生。这些结果可能有助于为工作记忆的神经基础的持续争论提供信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验