Suppr超能文献

构建可调主导面的 BiOI/CdS 异质结高效电荷转移新见解,用于可见光照射下抗生素降解和铬 Cr(VI) 还原。

New insights into the efficient charge transfer by construction of adjustable dominant facet of BiOI/CdS heterojunction for antibiotics degradation and chromium Cr(VI) reduction under visible-light irradiation.

机构信息

School of Geography & Environmental Science, Guizhou Normal University, Guiyang, 550000, China; School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.

Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.

出版信息

Chemosphere. 2022 Sep;302:134862. doi: 10.1016/j.chemosphere.2022.134862. Epub 2022 May 6.

Abstract

The narrow light-response range and high electron/hole recombination rate greatly restrict the widespread use of photocatalytic technology. The integration of exposing dominant facet of semiconductor and Z-scheme heterostructures designing is expected to break those barriers. Herein,In this work, hydrothermal and ultrasonic stirring methods were used to selectively exposed the (001) and (110) facet of BiOI to construct the BiOI/CdS heterostructures. The obtained BiOI(001)/CdS material shown the maximum degradation for tetracycline-based antibiotics (Oxytetracycline, Tetracycline and Doxycycline), and excellent reduction of hexavalent chromium. Combining the electron spin resonance and scavenger experiments, the superior photocatalytic capacity was attributed to the generation of superoxide and hydroxyl radicals. DFT calculation results shown BiOI(001)/CdS performed high binding energy and adsorption energy for hexavalent chromium, and the different work function between BiOI(001) and CdS confirmed the building of internal electric field, thereby increased the charge separation. Finally, the Gaussian 09 and HPLC-MS program investigated the attack sites of free radicals and degradation pathways in the degradation of antibiotics. This study not only provides a potential photocatalyst, also gives an in-depth understanding of the photocatalytic properties of heterojunctions constructed by different exposed crystal facets.

摘要

窄的光响应范围和高的电子/空穴复合率极大地限制了光催化技术的广泛应用。暴露半导体的优势晶面和设计 Z 型异质结的结合有望打破这些障碍。在这项工作中,采用水热和超声搅拌法选择性地暴露 BiOI 的(001)和(110)晶面,构建了 BiOI/CdS 异质结构。所得到的 BiOI(001)/CdS 材料对基于四环素的抗生素(土霉素、四环素和强力霉素)表现出最大的降解效率,对六价铬也有优异的还原能力。结合电子顺磁共振和清除剂实验,优异的光催化能力归因于超氧自由基和羟基自由基的生成。DFT 计算结果表明,BiOI(001)/CdS 对六价铬具有高的结合能和吸附能,BiOI(001)和 CdS 之间不同的功函数证实了内电场的建立,从而提高了电荷分离。最后,使用 Gaussian 09 和 HPLC-MS 程序研究了自由基的攻击位点和抗生素降解途径。这项研究不仅提供了一种潜在的光催化剂,还深入了解了不同暴露晶面构建的异质结的光催化性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验